|
Aruge, S., Batool, H., Khan, F. M., Abbas, F. I., Janjua, S. (2019). A pilot study�genetic diversity and population structure of snow leopards of Gilgit-Baltistan, Pakistan, using molecular techniques. PeerJ, (7672), 1–14.
Abstract: Background: The Hindu Kush and Karakoram mountain ranges in Pakistan�s northern areas are a natural habitat of the snow leopard (Panthera uncia syn. Uncia uncia) but the ecological studies on this animal are scarce since it is human shy by nature and lives in dif!cult mountainous tracts. The pilot study is conducted to exploit the genetic diversity and population structure of the snow leopard in this selected natural habitat of the member of the wildcat family in Pakistan.
Method: About 50 putative scat samples of snow leopard from !ve localities of Gilgit-Baltistan (Pakistan) along with a control sample of zoo maintained male snow leopard were collected for comparison. Signi!cant quality and quantity of genomic DNA was extracted from scat samples using combined Zhang�phenol�chloroform method and successful ampli!cation of cytochrome c oxidase I gene (190 bp) using mini-barcode primers, seven simple sequence repeats (SSR) markers and Y-linked AMELY gene (200 bp) was done.
Results: Cytochrome c oxidase I gene sequencing suggested that 33/50 (66%) scat samples were of snow leopard. AMELY primer suggested that out of 33 ampli!ed samples, 21 (63.63%) scats were from male and 12 (36.36%) from female leopards. Through successful ampli!cation of DNA of 25 out of 33 (75.75%) scat samples using SSR markers, a total of 68 alleles on seven SSR loci were identi!ed, showing low heterozygosity, while high gene "ow between population.
Discussion: The low gene flow rate among the population results in low genetic diversity causing decreased diversi!cation. This affects the adaptability to climatic changes, thus ultimately resulting in decreased population size of the species.
|
|
|
Bangjie, T., & Bingxing, Q. (1994). The Status and Problems of Snow Leopards in Captivity in China. In J.L.Fox, & D.Jizeng (Eds.), (pp. 149–156). Usa: Islt.
|
|
|
Bangjie, T., & Yanfa, L. (1988). The Status of Captive Snow Leopards in China. In H.Freeman (Ed.), (pp. 151–166). India: International Snow Leopard Trust and Wildlife Institute of India.
|
|
|
Blomqvist, L. (1978). The Snow Leopard, Panthera uncia, in Captivity and the 1977 World Register. Int.Ped.Book of Snow Leopards, 1, 22–34.
|
|
|
Blomqvist, L. (1995). Three decades of Snow Leopards Panthera uncia in Captivity. Int.Zoo Yearbook, 34, 178–185.
Abstract: The author reports the status of the captive population of snow leopards over the last three decades. Genetic and demographic information is also provided. The captive population as of 1992 was 541 leopards. klf. I
|
|
|
Graham, L. H., Goodrowe, K. L., Raeside, J. I., & Liptrap, R. M. (1995). Non-invasive monitoring of ovarian function in several felid species by measurement of fecal estradiol-17-beta and progestins. Zoo Biology, 14(3), 223–237.
Abstract: An extraction and assay procedure to measure fecal estradiol-17-beta and progestin concentrations in several cat species was developed and validated for use for noninvasive monitoring of ovarian function. Fecal samples were collected over a range of 3-20 months from female tigers (three), lions (three), snow leopards (three), cheetahs (two), caracals (two), and domestic cats (five). Samples were extracted with 90% methanol, lipids removed with petroleum ether, and the estradiol and progestins in the methanol measured by radioimmunoassay (RIA). High Performance Liquid Chromatography (HPLC) fractionation and subsequent RIA of the fractions indicated that the estradiol-17-beta antiserum cross-reacted primarily with estradiol-17-beta in the feces of lions and tigers and was assumed to be specific for estradiol-17-beta in the feces of other species as well. However, there were several immunoreactive compounds, presumably progesterone metabolites, excreted in the feces which varied both quantitatively and qualitatively among species. The behavior of tigers, lions, cheetahs, and caracals was visually monitored during the collection period and frequency of sexual behaviors was positively correlated with increases in fecal estradiol in all species observed. The mean fecal estradiol-17-beta peaks were as follows: tigers, 128.0 +- 13.1; lions, 186.0 +- 14.8; snow leopards, 136.7 +- 15.9; cheetahs, 140.9 +- 9.0; caracals, 24.5 +- 4.0; and domestic cats 158.9 +- 19.3 ng/gm. Fecal progestin concentrations rose significantly (P lt 0,001) only after breeding or during pregnancy and were as follows: tigers, 5.6 +- 0.6; lions, 1.9 +- 0.1; cheetahs, 8.4 +- 1.1; and caracals, 2.4 +- 0.4 mu-g/gm. Fecal progestins were elevated for one-half to two-thirds of the gestation length during presumed pseudopregnancy but remained elevated throughout successful pregnancies. These results suggest that ovarian function can be monitored noninvasively in the family Felidae by the measurement of fecal estradiol-17-beta and progestin concentrations.
|
|
|
Guerrero, D. (1998). Animal behavior concerns & solutions: snow leopard (Uncia uncia) evaluation, zoo. Anim.Keepers' Forum, 25(2), 56–58.
Abstract: The author offers advice on how a captive-raised snow leopard cub could be acclimated to humans so it could be used as a zoo “ambassador”. The cub had negative experiences with humans and lacked socialization with other animals and conspecifics. Methods of avoiding and redirecting the cub's aggressive behavior are suggested. lgh.
|
|
|
Jackson, R., & Fox, J. L. (1997). Snow Leopard Conservation: Accomplishments and Research Priorities. In R.Jackson, & A.Ahmad (Eds.), (pp. 128–144). Pakistan: Islt.
|
|
|
Janecka, J.E., Jackson, R., Yuquang, Z., Diqiang, L., Munkhtsog, B., et al. (2008). Population monitoring of snow leopards using noninvasive collection of scat samples: a pilot study (Vol. 11).
Abstract: The endangered snow leopard Panthera uncia occurs in rugged, high-altitude regions of Central Asia. However, information on the status of this felid is limited in many areas. We conducted a pilot study to optimize molecular markers for the analysis of snow leopard scat samples and to examine the feasibility of using noninvasive genetic methods for monitoring this felid. We designed snow leopard-specific primers for seven microsatellite loci that amplified shorter segments and avoided flanking sequences shared with repetitive elements. By redesigning primers we maximized genotyping success and minimized genotyping errors. In addition, we tested a Y chromosome-marker for sex identification and designed a panel of mitochondrial DNA primers for examining genetic diversity of snow leopards using scat samples. We collected scats believed to be from snow leopards in three separate geographic regions including north-western India, central China and southern Mongolia. We observed snow leopard scats in all three sites despite only brief 2-day surveys in each area. There was a high rate of species misidentification in the field with up to 54% of snow leopard scats misidentified as red fox. The high rate of field misidentification suggests sign surveys incorporating scat likely overestimate snow leopard abundance. The highest ratio of snow leopard scats was observed in Ladakh (India) and South Gobi (Mongolia), where four and five snow leopards were detected, respectively. Our findings describe a species-specific molecular panel for analysis of snow leopard scats, and highlight the efficacy of noninvasive genetic surveys for monitoring snow leopards. These methods enable large-scale noninvasive studies that will provide information critical for conservation of snow leopards.
|
|
|
Janecka, J. E., Jackson, R., Munkhtsog, B., Murphy, W. J. (2014). Characterization of 9 microsatellites and primers in snow leopards and a species-specific PCR assay for identifying noninvasive samples. Conservation Genetic Resource, 6(2), 369:373.
Abstract: Molecular markers that can effectively identify noninvasively collected samples and provide genetic
information are critical for understanding the distribution, status, and ecology of snow leopards (Panthera uncia). However, the low DNA quantity and quality in many
noninvasive samples such as scats makes PCR amplification and genotyping challenging. We therefore designed primers for 9 microsatellites loci previously isolated in the
domestic cat (Felis catus) specifically for snow leopard studies using noninvasive samples. The loci showed moderate levels of variation in two Mongolian snow leopard
populations. Combined with seven other loci that we previously described, they have sufficient variation (He = 0.504, An = 3.6) for individual identification and
population structure analysis. We designed a species species specific PCR assay using cytochrome b for identification of unknown snow leopard samples. These molecular markers
facilitate in depth studies to assess distribution, abundance, population structure, and landscape connectivity of this endangered species.
endangered species
|
|