Home | << 1 2 3 >> |
![]() |
Ahmad, I., Hunter, D. O., & Jackson, R. (1997). A Snow Leopard and Prey Species Survey in Khunjerab National Park, Pakistan. In R.Jackson, & A.Ahmad (Eds.), (pp. 92–95). Lahore, Pakistan: Islt.
Keywords: Slims; Islt; Wwf; predator; prey; Pakistan; Khunjerab; parks; park; reserve; reserves; refuge; Marco-Polo-sheep; blue-sheep; surveys; survey; transect; sighn; markings; marking; scrape; spray; ibex; tracks; pug marks; feces; livestock; kill; herder; herders; protected-area; blue; sheep; browse; international snow leopard trust; world wildlife fund; marco polo sheep; marco polo; pug; marks; protected area; protected areas; protected; area; areas; 2810
|
Brown, J. L., Wasser, S. K., Wildt, D. E., & Graham, L. H. (1994). Comparative Aspects of Steroid Hormone Metabolism and Ovarian Activity in Felids, Measured Noninvasively in Feces. Biol Reprod, 51(4), 776–786.
Abstract: Noninvasive fecal assays were used to study steroid metabolism and ovarian activity in several felid species. Using the domestic cat (Felis catus) as model, the excretory products of injected [14C]estradiol (E2) and [14C]progesterone (P4) were determined. Within 2 days, 97.0 +/- 0.6% and 96.7 +/- 0.5% of recovered E2 and P4 radioactivity, respectively, was found in feces. E2 was excreted as unconjugated estradiol and estrone (40%) and as a non-enzyme- hydrolyzable conjugate (60%). P4 was excreted primarily as non-enzyme- hydrolyzable, conjugated metabolites (78%) and as unconjugated pregnenolone epimers. A simple method for extracting fecal steroid metabolites optimized extraction efficiencies of the E2 and P4 excretion products (90.1 +/- 0.8% and 87.2 +/- 1.4%, respectively). Analysis of HPLC fractions of extracted fecal samples from the radiolabel-injected domestic cats revealed that E2 immunoreactivity coincided primarily with the unconjugated metabolized [14C]E2 peak, whereas progestogen immunoreactivity coincided with a single conjugated epimer and multiple unconjugated pregnenolone epimers. After HPLC separation, similar immunoreactive E2 and P4 metabolite profiles were observed in the leopard cat (F. bengalensis), cheetah (Acinonyx jubatus), clouded leopard (Neofelis nebulosa), and snow leopard (Panthera uncia). Longitudinal analyses demonstrated that changes in fecal E2 and P4 metabolite concentrations reflected natural or artificially induced ovarian activity. For example, severalfold increases in E2 excretion were associated with overt estrus or exogenous gonadotropin treatment, and elevated fecal P4 metabolite concentrations occurred during pregnant and nonpregnant (pseudopregnant) luteal phases. Although overall concentrations were similar, the duration of elevated fecal P4 metabolites during pseudopregnancy was approximately half that observed during pregnancy. In summary, steroid metabolism mechanisms appear to be conserved among these physically diverse, taxonomically related species. Results indicate that this hormone-monitoring approach will be extremely useful for elucidating the hormonal regulatory mechanism associated with the reproductive cycle, pregnancy, and parturition of intractable and endangered felid species.
Keywords: Animal; Carbon; Radioisotopes; Carnivora; Cats; Chromatography; High; Pressure; Liquid; Comparative Study; Estradiol; metabolism; Estrone; feces; chemistry; Female; Ovary; physiology; Pregnancy; Progesterone; Pseudopregnancy; Support; Non-U.S.Gov't; browse; non; government; gov't; us; 170
|
Graham, L. H., Goodrowe, K. L., Raeside, J. I., & Liptrap, R. M. (1995). Non-invasive monitoring of ovarian function in several felid species by measurement of fecal estradiol-17-beta and progestins. Zoo Biology, 14(3), 223–237.
Abstract: An extraction and assay procedure to measure fecal estradiol-17-beta and progestin concentrations in several cat species was developed and validated for use for noninvasive monitoring of ovarian function. Fecal samples were collected over a range of 3-20 months from female tigers (three), lions (three), snow leopards (three), cheetahs (two), caracals (two), and domestic cats (five). Samples were extracted with 90% methanol, lipids removed with petroleum ether, and the estradiol and progestins in the methanol measured by radioimmunoassay (RIA). High Performance Liquid Chromatography (HPLC) fractionation and subsequent RIA of the fractions indicated that the estradiol-17-beta antiserum cross-reacted primarily with estradiol-17-beta in the feces of lions and tigers and was assumed to be specific for estradiol-17-beta in the feces of other species as well. However, there were several immunoreactive compounds, presumably progesterone metabolites, excreted in the feces which varied both quantitatively and qualitatively among species. The behavior of tigers, lions, cheetahs, and caracals was visually monitored during the collection period and frequency of sexual behaviors was positively correlated with increases in fecal estradiol in all species observed. The mean fecal estradiol-17-beta peaks were as follows: tigers, 128.0 +- 13.1; lions, 186.0 +- 14.8; snow leopards, 136.7 +- 15.9; cheetahs, 140.9 +- 9.0; caracals, 24.5 +- 4.0; and domestic cats 158.9 +- 19.3 ng/gm. Fecal progestin concentrations rose significantly (P lt 0,001) only after breeding or during pregnancy and were as follows: tigers, 5.6 +- 0.6; lions, 1.9 +- 0.1; cheetahs, 8.4 +- 1.1; and caracals, 2.4 +- 0.4 mu-g/gm. Fecal progestins were elevated for one-half to two-thirds of the gestation length during presumed pseudopregnancy but remained elevated throughout successful pregnancies. These results suggest that ovarian function can be monitored noninvasively in the family Felidae by the measurement of fecal estradiol-17-beta and progestin concentrations.
Keywords: Artificial-Breeding-Program; captive-management; Estradiol-17beta; Pregnancy; Progesterone; Progestin; sexual-behavior; genetics; zoo; medicine; veterinary; snow-leopard; feces; fecal-analysis; snow leopard; artificial; breeding; program; captive; management; Estradiol; 17beta; sexual; behavior; browse; snow; leopard; fecal; analysis; 1390
|
Jackson, R. (1992). SSC Plan for Snow Leopard.
Keywords: physiology; status; distribution; description; behavior; reproduction; mating; breeding; vocalization; gestation; biology; habitat; scrapes; sprays; scat; feces; longevity; homerange; home-range; prey; diet; Cites; Iunc; parks; preserves; reserves; refuge; protected-areas; movements; activity; livestock; herders; depredation; conflict; trade; poaching; hunting; research; captivity; management; zoos; Slims; surveys; transects; browse; home range; home; range; protected area; protected areas; protected; area; areas; 3920; plan; snow; snow leopard; snow-leopard; leopard
|
Jackson, R. (2000). Linking Snow Leopard Conservation and People-Wildlife Conflict Resolution, Summary of a multi-country project aimed at developing grass-roots measures to protect the endangered snow leopard from herder retribution. Cat News, 33, 12–15.
Keywords: livestock-depredation; livestock; pastoralists; herders; Pakistan; Nepal; Tibet; Mongolia; India; protected-areas; parks; reserves; refuge; snow-leopard-incentive-program; economics; tourism; pens; corrals; enclosures; trapping; poisoning; killing; cubs; dens; retribution; behavior; predator; prey; Qomolangma; habitat; feces; fecal-analysis; compensation; Dogs; guard-dogs; religion; conservation; browse; depredation; snow; leopard; incentive; program; fecal; analysis; guard; Dog; 4000
|
Jackson, R., Zongyi, W., Xuedong, L., & Yun, C. (1994). Snow Leopards in the Qomolangma Nature Preserve of Tibet Autonomous Region. In J.L.Fox, & D.Jizeng (Eds.), (pp. 85–95). Usa: Islt.
Keywords: Qomolangma; protected-area; parks; preserves; refuge; Nepal; Tibet; China; field-study; blue-sheep; scrapes; sprays; scat; feces; pug-marks; sign; transects; interviews; herders; livestock; predation; predator; traps; trapping; habitat; status; distribution; threats; hunting; pelts; skins; fur; coats; poaching; bones; medicine; Cites; conflict; trade; conservation; management; protected area; protected; area; areas; protected areas; field study; field; study; pug marks; blue; sheep; browse; pug; marks; 3490
|
Jackson, R. M., & Ahlborn, G. (1988). Observations on the Ecology of Snow Leopard in West Nepal. In H.Freeman (Ed.), (pp. 65–87). India: Snow Leopard Trust and Wildlife Institute of India.
Abstract: This summary of a four year field study by Jackson and Ahlborn begging in 1982 and concluding in 1985, discusses behaviour, trapping and tracking techniques, home range, activity patterns, prey and habitat and survey methods.
Keywords: Nepal; field study; predator; prey; home-range; habitat; tracking; trapping; radio-collars; behavior; activity; patterns; sign; scrapes; feces; marking; markings; browse; home range; home; range; radio; collar; radio collar; collars; radio collars; research; 1670
|
Khan, A. (1998). Snow Leopard: Integral to Chitral Gol National Park (Vol. xvi). Seattle: Islt. |
Khan, A. (2004). Snow Leopard Occurrence in Mankial Valley, Swat: Final report.
Abstract: Mankial is a sub-valley of the Swat Kohistan. Temperate ecosystem of the valley is intact to a greater extent, which provides habitat to a variety of species of plants, animals and birds. Snow leopard is reported from the valley. To confirm its occurrence, the HUJRA (Holistic Understanding for Justified Research and Action), conducted the study titled “Snow Leopard Survey in Mankial Valley, district Swat, NWFP”. The author provided technical support, while ISLT (The International Snow Leopard Trust) funded the project under its small grants program. The World Wide Fund for Nature-Pakistan (WWF-Pakistan) and the Mankial Community Organization (MCO) facilitated surveys under the project. Surveys revealed that Snow leopard visits parts of the Mankial valley in winter months. Information from the local community shows that Snow leopard remains in the Serai (an off-shoot of the Mankial Valley) from early winter to early spring. Intensive surveys of the prime snow leopard winter habitat in the valley found several snow leopard signs including pugmarks, feces, and scrapes. The study also found occurrence of prey species through indirect evidence though. However, information from the local community confirmed that in the recent past there was a good population of markhor in the valley, which is now reduced to less than 50, mostly due to hunting and habitat disturbance. Hunting is part of the local culture and lifestyle. During winter months hunting pressure is low, as most of the local community migrates to warmer plain areas than Mankial Valley. However, those who live in the area lop oak branches for feeding their livestock and cut trees for burning, in addition to hunting prey species of snow leopard. This has resulted in stunted oak vegetation in most of the lower reaches of the valley and decline of the markhor population.
Keywords: snow; snow leopard; snow-leopard; leopard; valley; Report; project; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; ecosystem; habitat; species; plants; plant; Animals; Animal; birds; research; action; study; survey; Support; Islt; community; Organization; surveys; winter; information; local; sign; pugmarks; feces; scrapes; scrape; prey; prey species; prey-species; recent; population; markhor; hunting; Culture; Pressure; areas; area; feeding; livestock; burning; decline
|
Khatiwada, J. R., Chalise, M. K., & Kyes, R. (2007). Survey of Snow Leopard (Uncia uncia) and Blue Sheep (Pseudois nayaur) populations in the Kangchenjunga Conservation Area (KCA), Nepal. Final report.
Abstract: This study was carried out in the Kangchenjunga Conservation Area (KCA), Eastern Nepal from Feb – Nov 2007. We used the Snow Leopard Information Management System, SLIMS (second order survey technique) to determine the relative abundance of snow leopard in the upper part of KCA. Altogether, 36 transects (total length of 15.21 km) were laid down in the major three blocks of KCA. 104 Signs (77 scrapes, 20 feces, 2 Scent mark, 3 Pugmarks and 2 hairs) were recorded. Fixed-point count method was applied for blue sheep from appropriate vantage points. We counted total individual in each herd using 8x42 binocular and 15-60x spotting scope. A total of 43 herds and 1102 individuals were observed in the area. The standard SLIMS questionnaire was conducted to find out relevant information on livestock depredation patterns. Out of 35 households surveyed in KCA, 48% of herders lost livestock due to snow leopards. A total of 21 animals were reportedly lost due to snow leopards from August to September 2007.
Keywords: survey; snow; snow leopard; snow-leopard; leopard; uncia; Uncia uncia; Uncia-uncia; blue; blue sheep; blue-sheep; sheep; Pseudois; pseudois nayaur; Pseudois-nayaur; nayaur; populations; population; conservation; area; Nepal; Report; study; information; management; system; Slims; relative abundance; abundance; transects; transect; length; sign; scrapes; scrape; 20; feces; scent; pugmarks; hairs; Hair; using; livestock; livestock depredation; livestock-depredation; depredation; patterns; herders; herder; snow leopards; snow-leopards; leopards; Animals; Animal
|