Aizin B.M. (1985). Snow leopard.
Abstract: Snow leopard is a rare and endangered species, distributed in all mountain ridges of Kyrgyzstan. Its population is 1,400 animals, density being 0.2 0.5 animal per 1,000 ha. Its population was noticed to decrease in some ridges because of decreasing populations of mountain ungulates. 200 snow leopards were caught for the purpose of zoo-export over the last 20 years. This species is protected in the nature reserves Sary Chelek, Besh Aral, and natural park Ala Archa.
|
Aristov A.A. (2001). Genus Irbises Uncia Gray, 1854. Irbis or snow leopard Uncia uncia (Schreber, 1775).
Abstract: An identification table for genus and species of mammals of Russia and adjacent areas is given. The taxonomy, morphology, distribution and life history of carnivores are described. The features of genus Uncia and species Uncia uncia, geographical variability, distribution, biology and value are described in detail.
|
Aromov B. (1995). The Biology of the Snow Leopard in the Hissar Nature Reserve.
Abstract: The work contains data on biology snow leopard in Hissar nature reserve, Uzbekistan. The number of snow leopards in this reserve has increased from two or four in 1981 to between 13 and 17 individuals in 1994. Since 1981, snow leopards have been sighted 72 times and their tracks or pugmarks 223 times. In the Hissar Nature Reserve snow leopards largely feed on ibex. Over a period of 14 years, 92 kills and remains of ibex aged from one to thirteen years of age have been examined. Other records of predation, by the number of events observed, include 33 cases of juvenile and mature horses, 25 long-tailed marmot (Marmota caudata). 18 Himalayan snowcock (Tetraogallus himalayemis), 17 domestic goat, 13 wild boar (Sus scrofa), five domestic sheep and three incidents involving cattle. Twenty-two attacks on domestic flocks were reported, and these occurred during both the daytime and at night. Snow leopards usually mate between the 20th of February and March 20th. The offspring are born in late April to May, and there are usually two per litter (23 encounters), although a single litter of three has also been recorded.
|
Bannikov A.G. (1982). We must save them.
Abstract: It describes the USSR's fauna species included in the Red Data Book and gives an assessment of endangered species conservation practices throughout the world. It says about ways and perspectives of conservation and rehabilitation of rare animals in the USSR. It provides brief information concerning snow leopard's biology, distribution, number, opportunities for captive breeding, and international conservation activities aimed to protect this species.
|
Blomqvist, L., & Sten, I. (1982). Reproductive biology of the snow leopard, Panthera uncia. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards (pp. 71–79). Helsinki: Helsinki Zoo.
|
Chapron, G., & Legendre, S. (2002). Some Insights Into Snow Leopard (Uncia Uncia) Demography By Using Stage Structured Population Models.. Seattle: Islt.
Abstract: Based on the limited data available on snow leopard demography, we developed deterministic and stochastic stage-structured demographic models to study the population dynamics of this large cat. Our results reveal that even small leopard populations can persist provided their demographic parameters remain high, but less favorable scenarios would require larger population sizes. Population growth rate is more sensitive to breeder survivals than to any other parameters. A snow leopard population would start declining if yearly mortality claims more than 1/5 of the population. This study identifies poaching as a major threat to snow leopard survival and stresses the importance of long-term studies to better understand snow leopard population dynamics.
|
Chaudhuri, S., Mukherjee, S. K., Chatterjee, A., & Ganguli, J. L. (1992). Isolation of P multocida F-3, 4 from a stillborn snow leopard. Vet Rec, 130(2), 36.
|
De-hao, L. (1989). Economic Fauna of Qinghai. Xining: Qinghai People's Publishing House.
|
Dhungel, S. (1994). Conservation of the Snow Leopard in Nepal. In J. L. Fox, & D. Jezing (Eds.), (pp. 47–50). Usa: Islt.
|
Filla, M., Lama, R. P., Filla, T., Heurich, M., Balkenhol, N., Waltert, M., Khorozyan, I. (2022). Patterns of livestock depredation by snow leopards and effects of intervention strategies: lessons from the Nepalese Himalaya. Wildlife Research, .
Abstract: Context: Large carnivores are increasingly threatened by anthropogenic activities, and their protection is among the main goals of biodiversity conservation. The snow leopard (Panthera uncia) inhabits high-mountain landscapes where livestock depredation drives it into conflicts with local people and poses an obstacle for its conservation.
Aims: The aim of this study was to identify the livestock groups most vulnerable to depredation, target them in implementation of practical interventions, and assess the effectiveness of intervention strategies for conflict mitigation. We present a novel attempt to evaluate intervention strategies for particularly vulnerable species, age groups, time, and seasons.
Methods: In 2020, we conducted questionnaire surveys in two regions of the Annapurna Conservation Area, Nepal (Manang, n = 146 respondents and Upper Mustang, n = 183). We applied sample comparison testing, Jacobs’ selectivity index, and generalised linear models (GLMs) to assess rates and spatio-temporal heterogeneity of depredation, reveal vulnerable livestock groups, analyse potential effects of applied intervention strategies, and identify husbandry factors relevant to depredation.
Key results: Snow leopard predation was a major cause of livestock mortality in both regions (25.4–39.8%), resulting in an estimated annual loss of 3.2–3.6% of all livestock. The main intervention strategies (e.g. corrals during night-time and herding during daytime) were applied inconsistently and not associated with decreases in reported livestock losses. In contrast, we found some evidence that dogs, deterrents (light, music playing, flapping tape, and dung burning), and the use of multiple interventions were associated with a reduction in reported night-time depredation of yaks.
Conclusions and implications: We suggest conducting controlled randomised experiments for quantitative assessment of the effectiveness of dogs, deterrents, and the use of multiple interventions, and widely applying the most effective ones in local communities. This would benefit the long-term co-existence of snow leopards and humans in the Annapurna region and beyond.
|