Home | << 1 2 >> |
![]() |
Atzeni, L., Wang, J., Riordan, P., Shi, K., Cushman, S. A. (2023). Landscape resistance to gene flow in a snow leopard population from Qilianshan National Park, Gansu, China. Landscape Ecology, .
Abstract: Context: The accurate estimation of landscape resistance to movement is important for ecological understanding and conservation applications. Rigorous estimation of resistance requires validation and optimization. One approach uses genetic data for the optimization or validation of resistance models. Objectives We used a genetic dataset of snow leopards from China to evaluate how landscape genetics resistance models varied across genetic distances and spatial scales of analysis. We evaluated whether landscape genetics models were superior to models of resistance derived from habitat suitability or isolation-by-distance.
Methods: We regressed genetically optimized, habitat-based, and isolation-by-distance hypotheses against genetic distances using mixed effect models. We explored all subset combinations of genetically optimized variables to find the most supported resistance scenario for each genetic distance. Results: Genetically optimized models always out-performed habitat-based and isolation-by-distance hypotheses. The choice of genetic distances influenced the apparent influence of variables, their spatial scales and their functional response shapes, producing divergent resistance scenarios. Gene flow in snow leopards was largely facilitated by areas of intermediate ruggedness at intermediate elevations corresponding to small-to-large valleys within and between the mountain ranges. Conclusions: This study highlights that landscape genetics models provide superior estimation of functional dispersal than habitat surrogates and suggests that optimization of genetic distance should be included as an optimization routine in landscape genetics, along with variables, scales, effect size and functional response shape. Furthermore, our study provides new insights on the ecological conditions that promote gene flow in snow leopards, which expands ecological knowledge, and we hope will improve conservation planning. |
Bagchi, S., Sharma, R. K., Bhatnagar, Y.V. (2020). Change in snow leopard predation on livestock after revival of wild prey in the Trans-Himalaya. Wildlife Biology, , 1–11.
Abstract: Human–wildlife conflict arising from livestock-losses to large carnivores is an important challenge faced by conservation. Theory of prey–predator interactions suggests that revival of wild prey populations can reduce predator’s dependence on livestock in multiple-use landscapes. We explore whether 10-years of conservation efforts to revive wild prey could reduce snow leopard’s Panthera uncia consumption of livestock in the coupled human-and-natural Trans-Himalayan ecosystem of northern India. Starting in 2001, concerted conservation efforts at one site (intervention) attempted recovery of wild- prey populations by creating livestock-free reserves, accompanied with other incentives (e.g. insurance, vigilant herding). Another site, 50km away, was monitored as status quo without any interventions. Prey remains in snow leopard scats were examined periodically at five-year intervals between 2002 and 2012 to determine any temporal shift in diet at both sites to evaluate the effectiveness of conservation interventions. Consumption of livestock increased at the status quo site, while it decreased at the intervention-site. At the intervention-site, livestock-consumption reduced during 2002–2007 (by 17%, p = 0.06); this effect was sustained during the next five-year interval, and it was accompanied by a persistent increase in wild prey populations. Here we also noted increased predator populations, likely due to immigration into the study area. Despite the increase in the predator population, there was no increase in livestock-consumption. In contrast, under status quo, dependence on livestock increased during both five-year intervals (by 7%, p=0.08, and by 16%, p=0.01, respectively). These contrasts between the trajectories of the two sites suggest that livestock-loss can potentially be reduced through the revival of wild prey. Further, accommodating counter-factual scenarios may be an important step to infer whether conservation efforts achieve their targets, or not.
|
Brown, J. L., Wasser, S. K., Wildt, D. E., & Graham, L. H. (1994). Steroid Metabolism and the Effectiveness of Fecal Assays for Assessing Reproductive Status in Felids. Biology of Reproduction, 50(suppl 1), 185. |
Burgelo T.B. (1986). Brief information of snow leopard.
Abstract: This article describes the encounters with snow leopard and their traces in various areas of Kazakhstan. In the Aksu Djabagly nature reserve, population of snow leopard does not exceed 10-12 animals. There were found remains of moral, argali, ibex, small birds, red-tailed marmot, hare (Lepus talai), mouse rodents and plants. One encounter with snow leopard is known to have occurred in the Greater Almaty Canyon in 1971-1981. There are no less than 25 snow leopards in the Jungar Ala-Tau. Snow leopard was found in the Aksu river valley, ridge Saur, and South Altai. The following number of snow leopards was kept in Kazakhstan's zoos, as of January 1, 1984: two males in Alma-Ata, one female in Chimkent. In 1976, one cub was born in the Alma-Ata zoo.
Keywords: Kazakhstan; snow leopard; records; analysis of food remains; captive breeding.; 6400; Russian
|
Chapron, G., & Legendre, S. (2002). Some Insights Into Snow Leopard (Uncia Uncia) Demography By Using Stage Structured Population Models.. Seattle: Islt.
Abstract: Based on the limited data available on snow leopard demography, we developed deterministic and stochastic stage-structured demographic models to study the population dynamics of this large cat. Our results reveal that even small leopard populations can persist provided their demographic parameters remain high, but less favorable scenarios would require larger population sizes. Population growth rate is more sensitive to breeder survivals than to any other parameters. A snow leopard population would start declining if yearly mortality claims more than 1/5 of the population. This study identifies poaching as a major threat to snow leopard survival and stresses the importance of long-term studies to better understand snow leopard population dynamics.
Keywords: snow; leopard; uncia; viability; analysis; carnivore; carnivores; domestic; game; demographic; population; mortality; biology; mating; 4910
|
De Groot, H., Van Swieten, P., & Aalberse, R. C. (1990). Evidence for a Fel d I-like molecule in the “big cats” (Felidae species). J Allergy Clin Immunol, 86(1), 107–116.
Abstract: In this study, we investigated the cross-reactivity pattern of IgE and IgG4 antibodies to the major feline allergen, Fel d I. We studied the IgE and IgG4 response of 11 cat-allergic patients against Fel d I-like structures in eight members of the Felidae family: ocelot, puma, serval, siberian tiger, lion, jaguar, snow leopard, and caracal. Hair from these “big cats” was collected, extracted, and used in a RAST system and histamine-release test. By means of a RAST-inhibition assay with affinity-purified Fel d I from cat dander, it was established that, in the Felidae species, a Fel d I equivalent is present that reacts with IgE and IgG4 antibodies. We found that all patients had cross-reacting IgE antibodies to seven of the Felidae tested; no IgE antibodies reactive with the caracal were found. Eight of 10 patients with IgG4 antibodies directed to cat dander also had IgG4 antibodies directed to several Felidae species, including the caracal. However, the correlation between the IgE and the IgG4 antibody specificity was low, indicating that, in the case of Fel d I IgE and IgG4, antibodies do not necessarily have the same specificity.
Keywords: Adolescence; Adult; Allergens; immunology; Animal; Antibodies; Monoclonal; diagnostic; use; Antibody; Specificity; Carnivora; Cats; Comparative; study; Cross; Reactions; Hair; Histamine; Release; Human; IgE; analysis; IgG; Middle; Age; Radioallergosorbent; Test; methods; Support; Non-U.S.Gov't; browse; us; government; gov't; 240
|
Foose, T. J. (1982). A Species Survival PLan (SSP) for snow leopard, Panthera uncia: Genetic and demographic analysis and management. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards, Vol. 3 (Vol. 3, pp. 81–102). Helsinki: Helsinki Zoo. |
Froede, K. and J., R. (2001). Snow Leopard Manual Field Study Techniques for the Kingdom Nepal. Kathmandu, Nepal: WWF Nepal.
Abstract: The publication of this manual aims sharing and facilitating the study on snow leopard and its prey species among mid-level professionals interested in conducting fieldwork on their own. The manual is derived from the 1996 “Snow Leopard Survey and Conservation Handbook” written by Dr. Rodney Jackson and Dr. Don Hunter and published by International Snow Leopard Trust (ISLT) based in seatle, Washington, USA. The first section introduces the topic, the second and third section deal with presence/ absence and abundance survey methods. The various survey-froms with instructions are given in the annexes.
|
Gosselin, S. J., Loudy, D. L., Tarr, M. J., Balistreri, W. F., Setchell, K. D., Johnston, J. O., et al. (1988). Veno-occlusive disease of the liver in captive cheetah. Vet Pathol, 25(1), 48–57.
Abstract: Liver tissues from 126 captive cheetah were evaluated by light microscopy and histochemistry; eight animals were evaluated by electron microscopy. The main hepatic lesion, a vascular lesion resembling veno- occlusive disease (VOD) of the liver and characterized by subendothelial fibrosis and proliferation of smooth muscle-like cells in the central veins, was seen in 60% of the sexually mature cheetah. Although this hepatic vascular lesion was seen in cheetah as young as 1 year of age, the most severe lesions, usually associated with liver failure, were found in cheetah between the ages of 6 and 11. There was no sex predisposition, and in approximately 40% of the VOD cases, liver disease was not suspected clinically or at necropsy. VOD was found in other felidae, especially in the snow leopard. High levels of vitamin A in livers, as well as in diets of the cheetah, could be a contributing factor in the development of VOD in some groups of cheetah.
Keywords: Animal; Feed; analysis; Carnivora; Cheetahs; Female; Hepatic; Veno; Occlusive; Disease; pathology; veterinary; Histocytochemistry; Liver; ultrastructure; Male; Microscopy; Electron; Support; Non-U.S.Gov't; Vitamin A; browse; non; us; gov't; government; 280
|
Graham, L. H., Goodrowe, K. L., Raeside, J. I., & Liptrap, R. M. (1995). Non-invasive monitoring of ovarian function in several felid species by measurement of fecal estradiol-17-beta and progestins. Zoo Biology, 14(3), 223–237.
Abstract: An extraction and assay procedure to measure fecal estradiol-17-beta and progestin concentrations in several cat species was developed and validated for use for noninvasive monitoring of ovarian function. Fecal samples were collected over a range of 3-20 months from female tigers (three), lions (three), snow leopards (three), cheetahs (two), caracals (two), and domestic cats (five). Samples were extracted with 90% methanol, lipids removed with petroleum ether, and the estradiol and progestins in the methanol measured by radioimmunoassay (RIA). High Performance Liquid Chromatography (HPLC) fractionation and subsequent RIA of the fractions indicated that the estradiol-17-beta antiserum cross-reacted primarily with estradiol-17-beta in the feces of lions and tigers and was assumed to be specific for estradiol-17-beta in the feces of other species as well. However, there were several immunoreactive compounds, presumably progesterone metabolites, excreted in the feces which varied both quantitatively and qualitatively among species. The behavior of tigers, lions, cheetahs, and caracals was visually monitored during the collection period and frequency of sexual behaviors was positively correlated with increases in fecal estradiol in all species observed. The mean fecal estradiol-17-beta peaks were as follows: tigers, 128.0 +- 13.1; lions, 186.0 +- 14.8; snow leopards, 136.7 +- 15.9; cheetahs, 140.9 +- 9.0; caracals, 24.5 +- 4.0; and domestic cats 158.9 +- 19.3 ng/gm. Fecal progestin concentrations rose significantly (P lt 0,001) only after breeding or during pregnancy and were as follows: tigers, 5.6 +- 0.6; lions, 1.9 +- 0.1; cheetahs, 8.4 +- 1.1; and caracals, 2.4 +- 0.4 mu-g/gm. Fecal progestins were elevated for one-half to two-thirds of the gestation length during presumed pseudopregnancy but remained elevated throughout successful pregnancies. These results suggest that ovarian function can be monitored noninvasively in the family Felidae by the measurement of fecal estradiol-17-beta and progestin concentrations.
Keywords: Artificial-Breeding-Program; captive-management; Estradiol-17beta; Pregnancy; Progesterone; Progestin; sexual-behavior; genetics; zoo; medicine; veterinary; snow-leopard; feces; fecal-analysis; snow leopard; artificial; breeding; program; captive; management; Estradiol; 17beta; sexual; behavior; browse; snow; leopard; fecal; analysis; 1390
|
Henschel, P., & Ray, J. (2003). Leopards in African Rainforests: Survey and Monitoring Techniques (Wildlife Conservation Society, Ed.).
Abstract: Monitoring Techniques Forest leopards have never been systematically surveyed in African forests, in spite of their potentially vital ecological role as the sole large mammalian predators in these systems. Because leopards are rarely seen in this habitat, and are difficult to survey using the most common techniques for assessing relative abundances of forest mammals, baseline knowledge of leopard ecology and responses to human disturbance in African forests remain largely unknown. This technical handbook sums up the experience gained during a two-year study of leopards by Philipp Henschel in the Lop‚ Reserve in Gabon, Central Africa, in 2001/2002, supplemented by additional experience from carnivore studies conducted by Justina Ray in southwestern Central African Republic and eastern Congo (Zaire) . The main focus of this effort has been to develop a protocol that can be used by fieldworkers across west and central Africa to estimate leopard densities in various forest types. In developing this manual, Henschel tested several indirect methods to assess leopard numbers in both logged and unlogged forests, with the main effort devoted to testing remote photography survey methods developed for tigers by Karanth (e.g., Karanth 1995, Karanth & Nichols 1998; 2000; 2002), and modifying them for the specific conditions characterizing African forest environments. This handbook summarizes the results of the field testing, and provides recommendations for techniques to assess leopard presence/absence, relative abundance, and densities in African forest sites. We briefly review the suitability of various methods for different study objectives and go into particular detail on remote photography survey methodology, adapting previously developed methods and sampling considerations specifically to the African forest environment. Finally, we briefly discuss how camera trapping may be used as a tool to survey other forest mammals. Developing a survey protocol for African leopards is a necessary first step towards a regional assessment and priority setting exercise targeted at forest leopards, similar to those carried out on large carnivores in Asian and South American forests.
Keywords: forest leopards; african rainforests; survey; monitoring techniques; lope reserve; gabon; central africa; congo; zaire; field testing; populations; wild meat; relative abundance; density; live-trapping; presence and absense surveys; ad-hoc survey; bushmeat; systematic survey; monitoring; individual identification; tracks; Discriminant Function Analysis; genotyping; scat; Hair; Dna; remote photography; camera trapping; capture rates; Trailmaster; Camtrakker; bait; duikers; pigs; elephant; bongo; okapi; human hunters; 5300
|
Hol, E. H., & Marden, T. (1994). Methods for Sampling and Analysis to establish potential exposure of wildlife to persistent contaminants in remote areas. In J.L.Fox, & D.Jizeng (Eds.), (pp. 279–287). Usa: Islt. |
Hung, L., Talipu, Hua, L., Mingjiang, Q., & Schaller, G. B. (1985). A Snow Leopard Survey in the Taxkorgan Region, XInjiang, China. |
Jackson, R. (2000). Linking Snow Leopard Conservation and People-Wildlife Conflict Resolution, Summary of a multi-country project aimed at developing grass-roots measures to protect the endangered snow leopard from herder retribution. Cat News, 33, 12–15.
Keywords: livestock-depredation; livestock; pastoralists; herders; Pakistan; Nepal; Tibet; Mongolia; India; protected-areas; parks; reserves; refuge; snow-leopard-incentive-program; economics; tourism; pens; corrals; enclosures; trapping; poisoning; killing; cubs; dens; retribution; behavior; predator; prey; Qomolangma; habitat; feces; fecal-analysis; compensation; Dogs; guard-dogs; religion; conservation; browse; depredation; snow; leopard; incentive; program; fecal; analysis; guard; Dog; 4000
|
Jumabay, K., Wegge, P., Mishra, C., Sharma, K. (2013). Large carnivores and low diversity of optimal prey: a comparison of the diets of snow leopards Panthera uncia and wolves Canis lupus in Sarychat-Ertash Reserve in Kyrgyzstan. Oryx, , 1–7.
Abstract: In the cold and arid mountains of Central Asia, where the diversity and abundance of wild ungulates
are generally low, resource partitioning among coexisting carnivores is probably less distinct than in prey-rich areas. Thus, similar-sized carnivores are likely to compete for food. We compared the summer diets of snow leopards Panthera uncia and wolves Canis lupus in Sarychat-Ertash Reserve in the Tien-Shan mountains of Kyrgyzstan, based on analysis of genetically confirmed scats. Abundances of the principal prey species, argali Ovis ammon and Siberian ibex Capra sibirica, were estimated from field surveys. The diets consisted of few species, with high interspecific overlap (Pianka’s index50.91). Argali was the predominant prey, with .50% frequency of occurrence in both snow leopard and wolf scats. This was followed by Siberian ibex and marmots Marmota baibacina. Being largely unavailable, remains of livestock were not detected in any of the scats. In the snow leopard diet, proportions of argali and ibex were in line with the relative availabilities of these animals in the Reserve. This was in contrast to the diet of wolf, where argali occurred according to availability and ibex was significantly underrepresented. The high diet overlap indicates that the two predators might compete for food when the diversity of profitable, large prey is low. Competition may be more intense in winter, when marmots are not available. Hunting of argali and ibex outside the Reserve may be unsustainable and therefore reduce their abundances over time. This will affect both predators negatively and intensify competition for food. Reduction in ibex populations will directly affect the snow leopard, and the wolf is likely to be indirectly affected as a result of increased snow leopard predation of argali. |
Karmacharya, D. (2011). Field Protocol – Scat Collection for Genetic Analysis.
Abstract: Project funded by Snow Leopard Conservation Grant Program. Center for Molecular Genetics, Nepal.
|
Karnaukhov, A. S., Malykh, S. V., Korablev, M. P., Kalashnikova, Y. M., Poyarkov, A. D., Rozhnov, V. V. (2018). Current Status of the Eastern Sayan Snow Leopard (Panthera uncia) Grouping and Its Nutritive Base. Biology Bulletin, 45(9), 1106–1115.
Abstract: A field survey of snow leopard (Panthera uncia) habitats was carried out in the southeastern part of
the Eastern Sayan Mountains (Okinskii and Tunkinskii districts of the Republic of Buryatia and the Kaa- Khemskii district of Tuva Republic). Seven or eight adult snow leopards were observed as constant inhabitants of the Tunkinskie Gol'tsy, Munku-Sardyk, and Bol'shoi Sayan mountain ridges. The presence of eight snow leopards was confirmed using DNA-based analyses of scats collected in 2014 – 2016. The main prey species of the snow leopard in Eastern Sayan is the Siberian ibex (Capra sibirica), but its abundance has steadily decreased over the past 20 years. The red deer (Cervus elaphus) and the wild boar (Sus scrofa), which were some of the most numerous ungulates in the survey area, are replacing the Siberian ibex in the snow leopard's diet. In addition, the mountain hare (Lepus timidus) is also of importance to the snow leopard's diet. |
Koshkarev, E. (1998). Snow leopard along the border of Russia and Mongolia. Cat News, 28, 12–14.
Abstract: The author discusses the distribution of snow leopards along the border of Russia and Mongolia. The range extension of the leopard indicates their ability to cross desert areas that separate mountain habitats.habitat; range extension; scat analysis; techniques; tracks/tracking | snow leopard
Keywords: behavior; census; survey methods; desert-habitat; distribution; ecosystems; endangered; threatened species; home-range; territory; mammals; montane; Russia; Mongolia; scat-analysis; tracks; tracking; status; Hovsogul; Sayan; siberia; Hovsogol; browse; survey; methods; desert; habitat; threatened; species; home; range; scat; analysis; 550
|
Lovari, S., Boesi, R., Minder, I., Mucci, N., Randi, E., Dematteis, A., and Ale, S. B. (2009). Restoring a keystone predator may endanger a prey species in a human-altered ecosystem: the return of the snow leopard to Sagarmatha National Park. Animal Conservation, 12, 559–570.
Abstract: Twenty-five years ago, the snow leopard Uncia uncia, an endangered large cat, was eliminated from what is now Sagarmatha National Park (SNP). Heavy hunting pressure depleted that area of most medium-large mammals, before it became a park. After three decades of protection, the cessation of hunting and the recovery of wild ungulate populations, snow leopards have recently returned (four individuals). We have documented the effects of the return of the snow leopard on the population of its main wild prey, the Himalayan tahr Hemitragus jemlahicus, a 'near-threatened' caprin. Signs of snow leopard presence were recorded and scats were collected along a fixed trail (130 km) to assess the presence and food habits of the snow leopard in the Park, from 2004 to 2006. Himalayan tahr, the staple of the diet, had a relative occurrence of 48% in summer and 37% in autumn, compared with the next most frequent prey, musk deer Moschus chrysogaster (summer: 20%; autumn: 15%) and cattle (summer: 15%; autumn: 27%). In early summer, the birth rate of tahr (young-to-female ratio: 0.8-0.9) was high. The decrease of this ratio to 0.1-0.2 in autumn implied that summer predation concentrated on young tahr, eventually altering the population by removing the kid cohort. Small populations of wild Caprinae, for example the Himalayan tahr population in SNP, are sensitive to stochastic predation events and may be led to almost local extinction. If predation on livestock keeps growing, together with the decrease of Himalayan tahr, retaliatory killing of snow leopards by local people may be expected, and the snow leopard could again be at risk of local extinction. Restoration of biodiversity through the return of a large predator has to be monitored carefully, especially in areas affected by humans, where the lack of important environmental components, for example key prey species, may make the return of a predator a challenging event.
|
Lu, Q., Xiao, L., Cheng, C., Lu, Z., Zhao, J., Yao, M. (2021). Snow Leopard Dietary Preferences and Livestock Predation Revealed by Fecal DNA Metabarcoding: No Evidence for Apparent Competition Between Wild and Domestic Prey. Frontiers in Ecology and Evolution, 9(783546), 1–14.
Abstract: Accurate assessments of the patterns and drivers of livestock depredation by wild carnivores are vital for designing effective mitigation strategies to reduce human-wildlife conflict. Snow leopard’s (Panthera uncia) range extensively overlaps pastoralist land- use and livestock predation there is widely reported, but the ecological determinants of livestock consumption by snow leopards remain obscure. We investigated snow leopard dietary habits at seven sites across the Sanjiangyuan region of the Qinghai– Tibetan Plateau (QTP), an area central to the species’ global range. Snow leopard abundance, wild prey composition, and livestock density varied among those sites, thus allowing us to test the effects of various factors on snow leopard diet and livestock predation. Using DNA metabarcoding, we obtained highly resolved dietary data from 351 genetically verified snow leopard fecal samples. We then analyzed the prey preferences of snow leopards and examined ecological factors related to their livestock consumption. Across the sites, snow leopard prey was composed mainly of wild ungulates (mean = 81.5% of dietary sequences), particularly bharal (Pseudois nayaur), and supplemented with livestock (7.62%) and smaller mammals (marmots, pikas, mice; 10.7%). Snow leopards showed a strong preference for bharal, relative to livestock, based on their densities. Interestingly, both proportional and total livestock consumption by snow leopards increased linearly with local livestock biomass, but not with livestock density. That, together with a slight negative relationship with bharal density, supports apparent facilitation between wild and domestic prey. We also found a significant positive correlation between population densities of snow leopard and bharal, yet those densities showed slight negative relationships with livestock density. Our results highlight the importance of sufficient wild ungulate abundance to the conservation of viable snow leopard populations. Additionally, livestock protection is critically needed to reduce losses to snow leopard depredation, especially where local livestock abundances are high.
|
Ming, M., Baowen, H., Yu, M., & McCarthy, T. (2010). Survey on Bird Species and Analysis on Bird Diversity in the Central Kunlun Mountains in the Early Winter. Arid Zone Research, 27(2), 227–232. |
Pal, R., Panwar, A., Goyal, S. P., Sathyakumar, S. (2022). Changes in ecological conditions may influence intraguild competition: inferring interaction patterns of snow leopard with co-predators. PeerJ, 10(e14277), 1–26.
Abstract: Background: Large-scale changes in habitat conditions due to human modifications and climate change require management practices to consider how species communities can alter amidst these changes. Understanding species interactions across the gradient of space, anthropogenic pressure, and season provide the opportunity to anticipate possible dynamics in the changing scenarios. We studied the interspecific interactions of carnivore species in a high-altitude ecosystem over seasonal (summer and winter) and resource gradients (livestock grazing) to assess the impact of changing abiotic and biotic settings on coexistence.
Methods: The study was conducted in the Upper Bhagirathi basin, Western Himalaya, India. We analyzed around 4 years of camera trap monitoring data to understand seasonal spatial and temporal interactions of the snow leopard with common leopard and woolly wolf were assessed in the greater and trans-Himalayan habitats, respectively. We used two species occupancy models to assess spatial interactions, and circadian activity patterns were used to assess seasonal temporal overlap amongst carnivores. In addition, we examined scats to understand the commonalities in prey selection. Results: The result showed that although snow leopard and wolves depend on the same limited prey species and show high temporal overlap, habitat heterogeneity and differential habitat use facilitate co-occurrence between these two predators. Snow leopard and common leopard were spatially independent in the summer. Conversely, the common leopard negatively influences the space use of snow leopard in the winter. Limited prey resources (lack of livestock), restricted space (due to snow cover), and similar activity patterns in winter might result in strong competition, causing these species to avoid each other on a spatial scale. The study showed that in addition to species traits and size, ecological settings also play a significant role in deciding the intensity of competition between large carnivores. Climate change and habitat shifts are predicted to increase the spatial overlap between snow leopard and co-predators in the future. In such scenarios, wolves and snow leopards may coexist in a topographically diverse environment, provided sufficient prey are available. However, shifts in tree line might lead to severe competition between common leopards and snow leopards, which could be detrimental to the latter. Further monitoring of resource use across abiotic and biotic environments may improve our understanding of how changing ecological conditions can affect resource partitioning between snow leopards and predators. |
Shrestha, A., Thapa, K., Subba, S. A., Dhakal, M., Devkota, B. P., Thapa, G. J., Shrestha, S., Malla, S., Thapa, K. (2019). Cats, canines, and coexistence: dietary differentiation between the sympatric Snow Leopard and Grey Wolf in the western landscape of Nepal Himalaya. Journal of Threatened Taxa, 11(7), 13815–13821.
Abstract: Understanding the dietary habits of sympatric apex carnivores advances our knowledge of ecological processes and aids their conservation. We compared the diets of the sympatric Snow Leopard Panthera uncia and Grey Wolf Canis lupus using standard micro-histological analyses of scats collected from the western complex of Nepal Himalaya. Our study revealed one of the highest recorded contributions of livestock to the diet of top predators (55% for Grey Wolf and 39% for Snow Leopard) and high dietary overlap (0.82) indicating potential exploitative or interference competition. Their diet composition, however, varied significantly based on their consumption of wild and domestic prey. Limitation in data precludes predicting direction and outcome of inter-specific interactions between these predators. Our findings suggest a high rate of negative interaction with humans in the region and plausibly retaliatory killings of these imperilled predators. To ensure the sustained survival of these two apex carnivores, conservation measures should enhance populations of their wild prey species while reducing livestock losses of the local community through preventive and mitigative interventions.
|
Shrestha, R., & Wegge, P. (2006). Determining the composition of herbivore diets in the Trans-Himalayan rangelands: A comparison of field methods. Journal of Rangeland Ecology and Management, 59(5), 512–518.
Abstract: In late summer, in a semi-arid mountain range in Nepal, we compared 3 field methods for determining the botanical composition of herbivore diets. Data were collected from the same animals belonging to 1 herd of domestic yak (Bos grunniens) and 2 herds of mixed smallstock, consisting of domestic goats (Capra hircus) and sheep (Ovis aries). Bite count, feeding site examination, and microhistological analysis of feces gave different estimates of forage categories and plant species in both animal groups. Because yaks grazed in other vegetation communities when not observed for bite-counts and feeding signs, the results from the latter methods could not be compared directly with that from fecal analysis. In smallstock, feeding site examination gave higher estimates of graminoids and lower estimates of shrubs than the other 2 methods, probably because all feeding signs on shrubs were not detected. Bite-counts and fecal analysis gave comparable results, except that forbs were underestimated by fecal analysis, presumably due to their more complete digestion. Owing to the difficulty in collecting samples that are representative of the entire grazing period and the problem of recording feeding signs correctly, both feeding site examination and bite-counts are unsuitable methods for studying the food habits of free ranging domestic and wild herbivores. Microhistological analysis of feces appears to be the most appropriate method, but correction factors are needed to adjust for differential digestion. The systematic use of photomicrographs improves the speed and accuracy of the fecal analysis.
|
Shrestha, R., Wegge, P., & Koirala, R. A. (2005). Summer diets of wild and domestic ungulates in Nepal Himalaya. Journal of Zoology, 266, 111–119.
Abstract: The selection of summer forage by three sympatric ungulates in the Damodar Kunda region of upper Mustang in
north Nepal was studied to assess the extent of food overlap between them. To compare their diets, a microhistological technique of faecal analysis was used, adjusted for inherent biases by comparing it with bite-count data obtained in domestic goats. Tibetan argali Ovis ammon hodgsoni, naur (blue sheep or bharal) Pseudois nayaur and domestic goat Capra hircus consumed mostly forbs, graminoids and browse, respectively. The proportions of food items in their diets were significantly different both at the plant species (P<0.02) and at the forage category level (P<0.001). Except for sharing three common plants (Agrostis sp., Stipa sp. and Potentilla fruticosa), dietary overlap at the species level was quite low. At the forage category level, naur and domestic goat overlapped more than the other ungulate pairs. Although all three species were opportunistic, mixed feeders, argali was a more selective forb specialist grazer than the other two ungulates. Owing to some spatial separation and little dietary overlap, interspecific competition for summer forage was low. If animal densities increase, however, goats are expected to compete more with naur than with argali because of their more similar diets. Owing to differences in forage selection by argali and naur throughout their large geographical ranges, reflecting adaptations to local ecological conditions, inferences regarding forage competition between domestic livestock and these two wild caprins need to be made from local, site-specific studies, rather than from general diet comparisons. |