|
Ahmad, I., Hunter, D. O., & Jackson, R. (1997). A Snow Leopard and Prey Species Survey in Khunjerab National Park, Pakistan. In R.Jackson, & A.Ahmad (Eds.), (pp. 92–95). Lahore, Pakistan: Islt.
|
|
|
Anonymous. (1992). International Specialists Discuss China's Threatened Cats.
|
|
|
Anonymous. (1994). Resolutions Conservation of Snow Leopard, Seventh International Snow Leopard Symposium. In J.L.Fox, & D.Jizeng (Eds.), (pp. 329–331). Usa: Islt.
|
|
|
Ferguson, D. A. (1997). International Cooperation for Snow Leopard and Biodiversity Conservation: The Government Perspective. In R.Jackson, & A.Ahmad (Eds.), (pp. 178–193). Lahore, Pakistan: Islt.
|
|
|
Hunter, D. (1996). Mongolian-American Snow Leopard Project (Vol. xiv). Seattle: International Snow Leopard Trust.
|
|
|
Hunter, D. O., Jackson, R., Freeman, H., & Hillard, D. (1994). Project snow leopard: a model for conserving central Asia biodiversity. In J.Fox, & D.Jizeng (Eds.), (pp. 247–252). Usa: International Snow Leopard Trust.
|
|
|
International Snow Leopard Trust. (1993). First SLIMS Workshop Held in China (Vol. xi). Seattle: Islt.
|
|
|
International Snow Leopard Trust. (1999). International Snow Leopard Trust, Conservation and Education Program for 1999.
|
|
|
International Snow Leopard Trust. (1999). Snow Leopard News Spring 1999. Seattle, WA: Islt.
|
|
|
International Snow Leopard Trust. (1999). Snow Leopard News Summer/ Fall 1999. Seattle, WA: Islt.
|
|
|
International Snow Leopard Trust. (2000). Snow Leopard News Spring 2000. Seattle, Wa: Islt.
|
|
|
International Snow Leopard Trust. (2001). Snow Leopard News Fall 2001. Seattle, WA: Islt.
|
|
|
Jack, Jill, Jackson, P., Wharton, D., & Jackson, R. Snow leopard, Ucia uncia.
|
|
|
Jackson, R. (1992). SSC Plan for Snow Leopard.
|
|
|
Jackson, R. (1994). Second SLIMS Workshop Held (Vol. xii). Seattle, WA: Islt.
|
|
|
Jackson, R. (1995). Third Slims Workshop held in Mongolia (Vol. xiii). Seattle: Islt.
|
|
|
Jackson, R. (1997). Bhutan Workshop: Thimpu, Land of the Thunder Dragon (Vol. xv). Seattle, Wa: Islt.
|
|
|
Jackson, R., & Fox, J. L. Snow Leopard and Prey Species Workshop in Bhutan.
|
|
|
Jackson, R., & Fox, J. L. (1997). Snow Leopard Conservation: Accomplishments and Research Priorities. In R.Jackson, & A.Ahmad (Eds.), (pp. 128–144). Pakistan: Islt.
|
|
|
Jackson, R., & Fox, J. L. (2000). Report on Fifth Slims Training Workshop (Nepal) (Vol. xvii). Seattle: International Snow Leopard Trust.
Abstract: Nepal's snow leopards (Uncia uncia) are mostly found along the northern border with Tibet (China). The largest populations are in Dolpa, Mugu, Manang, and Myagdi Districts. Potential habitat totals about 30,000 square kilometers. Numbers are estimated at 300-500, but surveys are urgently needed to confirm this rough guess. Like elsewhere, the primary threats center on poaching, depletion of natural prey, livestock depredation and resultant retributive killing of snow leopards by herders, and the lack of public awareness and support for conserving snow leoaprds, especially among local herders.
|
|
|
Jackson, R., Hunter, D., & Emmerich, C. (1997). SLIMS: An Information Management System for Promoting the Conservation of Snow Leopards and Biodiversity in the Mountains of Central Asia. In R.Jackson, & A.Ahmad (Eds.), (pp. 75–91). Lahore, Pakistan: Islt.
|
|
|
Khan, A. (1998). Snow Leopard: Integral to Chitral Gol National Park (Vol. xvi). Seattle: Islt.
|
|
|
Khatiwada, J. R., Chalise, M. K., & Kyes, R. (2007). Survey of Snow Leopard (Uncia uncia) and Blue Sheep (Pseudois nayaur) populations in the Kangchenjunga Conservation Area (KCA), Nepal. Final report.
Abstract: This study was carried out in the Kangchenjunga Conservation Area (KCA), Eastern Nepal from Feb – Nov 2007. We used the Snow Leopard Information Management System, SLIMS (second order survey technique) to determine the relative abundance of snow leopard in the upper part of KCA. Altogether, 36 transects (total length of 15.21 km) were laid down in the major three blocks of KCA. 104 Signs (77 scrapes, 20 feces, 2 Scent mark, 3 Pugmarks and 2 hairs) were recorded. Fixed-point count method was applied for blue sheep from appropriate vantage points. We counted total individual in each herd using 8x42 binocular and 15-60x spotting scope. A total of 43 herds and 1102 individuals were observed in the area. The standard SLIMS questionnaire was conducted to find out relevant information on livestock depredation patterns. Out of 35 households surveyed in KCA, 48% of herders lost livestock due to snow leopards. A total of 21 animals were reportedly lost due to snow leopards from August to September 2007.
|
|
|
Malik, M. M. (1997). The Current Status of Snow Leopards and Their Prey Status and Conservation of Snow Leopard in Pakistan. In R.Jackson, & A.Ashiq (Eds.), (pp. 11–20). Lahore, Pakistan: International Snow Leopard Trust.
|
|
|
McCarthy, K., Fuller, T., Ming, M., McCarthy, T., Waits, L., & Jumabaev, K. (2008). Assessing Estimators of Snow Leopard Abundance (Vol. 72).
Abstract: The secretive nature of snow leopards (Uncia uncia) makes them difficult to monitor, yet conservation efforts require accurate and precise methods to estimate abundance. We assessed accuracy of Snow Leopard Information Management System (SLIMS) sign surveys by comparing them with 4 methods for estimating snow leopard abundance: predator:prey biomass ratios, capture-recapture density estimation, photo-capture rate, and individual identification through genetic analysis. We recorded snow leopard sign during standardized surveys in the SaryChat Zapovednik, the Jangart hunting reserve, and the Tomur Strictly Protected Area, in the Tien Shan Mountains of Kyrgyzstan and China. During June-December 2005, adjusted sign averaged 46.3 (SaryChat), 94.6 (Jangart), and 150.8 (Tomur) occurrences/km. We used
counts of ibex (Capra ibex) and argali (Ovis ammon) to estimate available prey biomass and subsequent potential snow leopard densities of 8.7 (SaryChat), 1.0 (Jangart), and 1.1 (Tomur) snow leopards/100 km2. Photo capture-recapture density estimates were 0.15 (n = 1 identified individual/1 photo), 0.87 (n = 4/13), and 0.74 (n = 5/6) individuals/100 km2 in SaryChat, Jangart, and Tomur, respectively. Photo-capture rates
(photos/100 trap-nights) were 0.09 (SaryChat), 0.93 (Jangart), and 2.37 (Tomur). Genetic analysis of snow leopard fecal samples provided minimum population sizes of 3 (SaryChat), 5 (Jangart), and 9 (Tomur) snow leopards. These results suggest SLIMS sign surveys may be affected by observer bias and environmental variance. However, when such bias and variation are accounted for, sign surveys indicate relative abundances similar to photo rates and genetic individual identification results. Density or abundance estimates based on capture-recapture or ungulate biomass did not agree with other indices of abundance. Confidence in estimated densities, or even detection of significant changes in abundance of snow leopard, will require more effort and better documentation.
|
|