Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–12] |
![]() |
Mishra, C., Young, J. C., Fiechter, M., Rutherford, B., Redpath, S. M. (2017). Building partnerships with communities for biodiversity conservation: lessons from Asian mountains. Journal of Applied Ecology, , 1–9.
Abstract: Applied ecology lies at the intersection of human societies and natural systems. Consequently, applied ecologists are constantly challenged as to how best to use ecological knowledge to influence the management of ecosystems (Habel et al. 2013). As Hulme (2011) has pointed out, to do so effectively we must leave our ivory towers and engage with stakeholders. This engagement is especially important and challenging in areas of the world where poverty, weak institutions and poor governance structures conspire to limit the ability of local communities to contribute to biodiversity conservation. These communities often bear disproportionate costs in the form of curtailed access to natural resources, ecosystem services, and developmental
programmes, and also suffer wildlife-caused damage, including injuries or loss of human life, and economic and psychological impacts (Madhusudan & Mishra 2003). It is well-recognized that conservation efforts in large parts of the world historically have been perceived to be discriminatory by local people (Mishra 2016). The need for engagement with local communities is therefore embedded in the 2020 Aichi biodiversity targets and is widely thought to be critical to the success of conservation efforts. However, although the need for engagement is clear, as ecologists and practitioners we often have little formal training in how we should engage with local communities and how we can recognize the pitfalls and opportunities provided by developing genuine partnerships. The practical challenges of achieving effective engagement are considerable (Agrawal & Gibson 1999; Waylen et al. 2010, 2013), and such forays are fraught with difficulties and ethical considerations (Chan et al. 2007). When they are done badly, conservation interventions can damage relationships and trust, and lead to serious injustice to local people and setbacks for ecological outcomes (Duffy 2010). Much has been written on knowledge exchange and participatory research approaches (e.g. Reed et al. 2014 and references therein). This Practitioner’s Perspective seeks to focus on the next logical step: the elements that practitioners and researchers need to consider when engaging with communities to effect conservation. Engagement around the management of protected areas has been discussed and formalized (e.g. Dudley 2008). Considerable literature has also emerged, particularly from Africa, on the use and co-management of natural resources, commonly referred to as community-based natural resource management or CBNRM (e.g. Fabricius 2004; Roe, Nelson & Sandbrook 2009; Child & Barnes 2010). There have been attempts to draw general principles for CBNRM (e.g. Thakadu 2005; Gruber 2010). In the related field of community-based conservation, however, while there have been efforts to draw lessons (e.g. Berkes 2004), little exists in terms of frameworks or guidelines for effectively working with local communities to effect biodiversity conservation in multi-use landscapes (Mishra 2016). The eight principles for community-based conservation outlined here (Fig. 1) build on ideas developed in fields as diverse as applied ecology, conservation and natural resource management, community health, social psychology, rural development, negotiation theory, and ethics (see Mishra 2016). They have been developed, challenged and tested through 20 years of community experience andour own research on the endangered snow leopard Panthera uncia and its mountain ecosystems, in South and Central Asia. We suspect that with contextual adaptations, their relevance for applied ecologists and practitioners may be universal. |
Moheb, Z., Fuller, T. K., Zahler, P. I. (2022). Snow Leopard – human conflict as a conservation challenge – a review. Snow Leopard Reports, 1, 11–24.
Abstract: Human conflict with large carnivores continues to be a great conservation challenge, and conflict with snow leopards (Panthera uncia) has been studied to understand causes and propose mitigation schemes. While the nature of snow leopard-human conflict is similar in most cases, reported studies have been case- and area-specific with mitigation strategies not necessarily based on a synthesis of relevant literature. We reviewed snow leopard literature published from 1970-2020 to identify the main drivers of human-snow leopard conflict (HSLC) and describe conservation and conflict mitigation strategies commonly employed. Based on 47 relevant peer-reviewed articles, review papers, book chapters, project reports, and other grey literature, we identified four major conflict domains: livestock management-related, socio-economic/human-related, ecological, and policy-related. Most articles suggested more than one conflict mitigation scheme. Three conflict mitigation domains – preventive, supportive, and compensatory – were widely reflected in the snow leopard-human conflict literature. The most commonly reported mitigation schemes included: 1) building or predator-proofing corrals; 2) training shepherds and improving livestock guarding; 3) livestock insurance schemes; 4) compensation for livestock predation; 5) capacity building, education, and awareness programs; and 6) improved breeding and use of guard dogs. Future management efforts need to tailor their approach depending on cultural, economic, and ecological circumstances.
|
Moheb, Z., Sahel, K., Fazli, M., Hakimi, M., Ismaily, S. (2023). Snow Leopard Intrusions into Livestock Corrals in Badakhshan, Afghanistan: Challenges and Solutions. Snow Leopard Reports, , 1–5.
Abstract: Snow leopards (Panthera uncia) frequently prey on livestock throughout their range, posing a potential threat to human livelihoods and endangering the predator’s own survival. In this study, we document seven incidents of snow leopards intruding into livestock corrals and engaging in surplus killing in three districts of Badakhshan, Afghanistan. Six of the predation incidents were attributed to a single individual, occurring in five locations of Wakhan District and eventually in Yumgan District, where the captured animal was relocated. The remaining predation incident occurred in Keran-wa Munjan District, marking the first recorded evidence of snow leopards in this area. In all but one of the incidents, the predator was trapped in the corral it intruded and safely released back to the wild with the support of the National Environmental Protection Agency (NEPA) and Wildlife Conservation Society (WCS) team in Afghanistan. Local communities have been supportive in releasing the snow leopard despite losses of over 50 livestock. To mitigate negative interactions between snow leopards and livestock, conservation efforts should focus on conserving prey species, implementing predator- proof measures for livestock corrals, and utilizing collar tracking when a trapped snow leopard is found in a corral. Unfortunately, when an individual repeatedly enters livestock corrals and continues killing livestock, capture and relocation to captivity often become the only viable option to address the problem and ensure the animal’s safety from retaliatory action by affected herders.
|
Murali, R., Redpath, S., Mishra, C. (2017). The value of ecosystem services in the high altitude Spiti Valley, Indian Trans-Himalaya. Elsevier, (28), 115–123.
Abstract: The high mountain ranges of South and Central Asia are increasingly being exposed to large-scale development
projects. These areas are home to traditional pastoralist communities and internationally important biodiversity including the endangered snow leopard Panthera uncia. Development projects rely on economic cost-benefit analysis, but the ecosystem services in the high Himalayas are poorly understood and are rarely accounted for. As a first step to fill this gap, we identified the main ecosystem services used by local people in the Trans-Himalayan Spiti Valley (7591 km2), a region important for conservation of snow leopards and high mountain biodiversity, and undertook an economic valuation. Stakeholders identified a range of services, though these were dominated by provisioning services identified by 90% of respondents. Only 5.4% of the respondents recognised regulatory services and 4.8% recognised cultural services. The mean economic value of provisioning services was estimated at US$ 3622 ± 149 HH1 yr1, which was 3.8 times higher than the average annual household income. Our results underscore the need to account for ecosystem services in the cost-benefit analyses of large-scale development projects in addition to assessments of their environmental and social impact. |
Oberosler, V., Tenan, S., Groff, C., Krofel, M., Augugliaro, C., Munkhtsog, B., Rovero, F. (2021). First spatially‐explicit density estimate for a snow leopard population in the Altai Mountains. Biodiversity and Conservation, , 15.
Abstract: The snow leopard Panthera uncia is an elusive and globally-threatened apex predator occurring in the mountain ranges of central Asia. As with other large carnivores, gaps in data on its distribution and abundance still persist. Moreover, available density estimates are often based on inadequate sampling designs or analytical approaches. Here, we used camera trapping across a vast mountainous area (area of the sampling frame 850 km2; analysed habitat extent 2600 km2) and spatially-explicit capture-recapture (SECR) models to provide, to our knowledge, the first robust snow leopard population density estimate for the Altai Mountains. This region is considered one of the most important conservation areas for snow leopards, representing a vast portion of suitable habitat and a key ecological corridor. We also provide estimates of the scale parameter (σ) that reflects ranging behaviour (activity range) and baseline encounter probability, and investigated potential drivers of density and related parameters by assessing their associations with anthropogenic and environmental factors. Sampling yielded 9729 images of snow leopards corresponding to 224 independent detections that belonged to a minimum of 23 identified adult individuals. SECR analysis resulted in an overall density of 1.31 individuals/100 km2 (1.15%–1.50 95% CI), which was positively correlated with terrain slope. This estimate falls within the mid-values of the range of density estimates for the species globally. We estimated significantly different activity range size for females and males (79 and 329 km2, respectively). Base- line encounter probability was negatively associated with anthropogenic activity. Our study contributes to on-going efforts to produce robust global estimates of population abundance for this top carnivore.
|
Oli, M. (1994). Snow leopards and blue sheep in Nepal: Densities and predator: Prey ratio (Vol. 75).
Abstract: I studied snow leopards (Panthera uncia) and blue sheep (Pseudois nayaur) in Manang District, Annapurna Conservation Area, Nepal, to estimate numbers and analyze predatorprey interactions. Five to seven adult leopards used the 105-km2 study area, a density of 4.8 to 6.7 leopards/100 km2. Density of blue sheep was 6.6-10.2 sheep/km2, and biomass density was 304 kg/km2. Estimated relative biomass consumed by snow leopards suggested that blue sheep were the most important prey; marmots (Marmota himalayana) also contributed significantly to the diet of snow leopards. Snow leopards in Manang were estimated to harvest 9-20% of total biomass and 11-24% of total number of blue sheep annually. Snow leopard :blue sheep ratio was 1 :1 14-1 :159 on a weight basis, which was considered sustainable given the importance of small mammals in the leopard's diet and the absence of other competing predators.
|
Oli, M. K. (1993). A key for the identification of the hair of mammals of a snow leopard (Panthera uncia) habitat in Nepal. Journal of Zoology London, 231(1), 71–93.
Abstract: Analysis of prey remains in scats, particularly hairs, in widely used to study diet of mammalian predators, but identification of hair is often difficult because hair structures vary considerably both within and between species. Use of photographic reference of diagnostically important hair structures from mammals occurring in a predator's habitat has been found to be convenient for routine identification. A photographic reference key was developed for the identification of hairs of the mammals known to occur in a snow leopard (Panthera uncia) habitat in the Annapurna Conservation Area, Nepal. The key included a photographic reference of the diagnostic hair structures of nine species of wild and five species of domestic mammals. The cross-sectional appearance, shape and arrangement of medulla, the ratio of cortex to medulla, and the form and distribution of pigment in medulla and cortex were important diagnostic aids in the identification of hairs.
Keywords: Nepal; snow leopard; scats; Hair; diet; identification; Panthera-uncia; browse; panthera uncia; panthera; uncia; 780
|
Oli, M. K., & Rogers, E. M. (1996). Seasonal pattern in group size and population composition of blue sheep in Manang, Nepal. Journal of Wildlife Management, 60(4), 797–801.
Abstract: Blue sheep (Pseudois nayaur) are the principal prey of the endangered snow leopard (Panthera uncia) in the Himalayas and adjacent ranges. We studied group size and population composition of blue sheep in Manang District, Annapurna Conservation Area, Nepal. Overall mean group size was 15.6 (SE = 1.3), but it varied seasonally (P lt 0.001), with significantly smaller groups in winter than in other seasons. Mixed groups were most numerous in all seasons, and there was no evidence of sexual segregation. Yearling sex ratio (93.7 M:100 F) did not vary seasonally, nor did the ratio deviate from parity. Adult sex ratio showed a seasonal pattern favoring males post-parturition but female-biased during the rut and pre-parturition. Seasonal variation in sex-specific mortality is offered as a plausible explanation for the observed pattern in adult sex ratio.
Keywords: prey; snow leopard; panthera uncia; Nepal; annapurna conservation area; predator; blue; sheep; browse; Panthera-uncia; panthera; uncia; Annapurna-Conservation-Area; annapurna; conservation; area; 650
|
Oli, M. K., Taylor, I. R., & Rogers, M. E. (1994). Snow leopard Panthera unica predation of livestock: An assessment of local perceptions in the Annapurna Conservation Area, Nepal. Biological Conservation, 68(1), 63–68.
Abstract: Public attitudes towards snow leopard Panthera uncia predation of domestic livestock were investigated by a questionnaire survey of four villages in snow leopard habitat within the Annapurna Conservation Area, Nepal. Most local inhabitants were subsistence farmers, many dependent upon yaks, oxen, horses and goats, with an average livestock holding of 26.6 animals per household. Reported losses to snow leopards averaged 0.6 and 0.7 animals per household in two years of study, constituting 2.6% of total stockholding but representing in monetary terms almost a quarter of the average annual Nepali national per capita income. Local people held strongly negative attitudes towards snow leopards and most suggested that total extermination of leopards was the only acceptable solution to the predation problem. Snow leopards were reported to be killed by herdsmen in defence of their livestock. The long-term success of snow leopard conservation programmes may depend upon the satisfactory resolution of the predation conflict. Some possible ways of reducing predation losses are also discussed.
|
Pahuja, M., Sharma, R. K. (2021). Wild Predators, Livestock, and Free Ranging Dogs: Patterns of Livestock Mortality and Attitudes of People Toward Predators in an Urbanizing Trans-Himalayan Landscape. Frontiers in Conservation Science, 2(109), 1–13.
Abstract: Livestock depredation by large carnivores is a significant source of conflicts over predators and an important conservation and economic concern. Preventing livestock loss to wild predators is a substantial focus of human-carnivore conflict mitigation programs. A key assumption of the preventive strategy is reduction in the livestock losses leading to a positive shift in the attitudes toward predators. Therefore, it is important to quantify the true extent of livestock mortality caused by wild predators and its influence on attitudes of the affected communities. We examined seasonal and spatial patterns of livestock mortality and factors influencing people’s attitudes toward wild predators i.e., snow leopards (Panthera uncia) and wolves (Canis lupus chanco) and free-ranging dogs (Canis lupus familiaris) in a Trans-Himalayan urbanizing landscape in India. We used systematic sampling to select the survey households and implemented a semi- structured questionnaire to respondents. The sampled villages (n = 16) represent a mosaic of urban and agricultural ecosystems within a radius of 40 km of Leh town. In 2016–2017, 93% of the sampled households lost livestock to predators, accounting for 0.93 animals per household per year. However, of the total events of livestock mortality, 33% were because of weather/natural events, 24% by snow leopards, 20% because of disease, 15% because of free-ranging dogs and 9% because of wolves. The annual economic loss per household because of livestock mortality was USD 371, a substantial loss given the average per capita income of USD 270 in the region. Of the total loss, weather/natural events caused highest loss of USD 131 (35%), followed by snow leopards USD 91 (25%), disease USD 87 (24%), free ranging dogs USD 48 (13%), and wolves USD 14 (4%). Despite losing a considerable proportion of livestock (33 %) to wild predators, respondents showed a positive attitude toward them but exhibited neutral attitudes toward free-ranging dogs. Gender emerged as the most important determinant of attitudes toward wild predators, with men showing higher positive attitude score toward wild predators than women. Our findings highlight the context specific variation in human-wildlife interactions and emphasize that generalizations must be avoided in the absence of site specific evidence.
|