Ahlborn, G., & Jackson, R. M. (1988). Marking in Free-Ranging Snow Leopards in West Nepal: A preliminary assesment. In H.Freeman (Ed.), (pp. 25–49). India: Snow Leopard Trust and the Wildlife Institute of India.
Abstract: Describes and Quantifies snow leopard marking behaviour, based primarily on sign, gatherd during a four year study in Nepal. Emphasis is on scrapes and spray markings, detailing their frequency of occurence realtive to habitat characteristics and season. Both sexes mark intensively, sign abundance is associated with intensity of use, and sign is concentrated along breaks in terrain.
|
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
|
Ale, S. Conservation of the snow leopard in Nepal.
|
Ale, S., Thapa, K., Jackson, R., Smith, J.L.D. (2010). The fate of snow leopards in and around Mt. Everest. Cat News, 53(Autumn), 19–21.
Abstract: Since the early 2000s snow leopards Panthera uncia have re-colonized the southern slopes of Mt. Everest after several decades of extirpation. Are they now beginning to disperse to the adjoining valleys that may serve as habitat corridors linking the Everest region to other protected areas in Nepal? We conducted a cursory survey in autumn 2009 in Rolwaling lying west of Mt. Everest and detected snow leopard presence. We conclude that in these remote valleys snow leopards must rely upon livestock given the low abundance of natural prey, Himalayan tahr. Livestock-rearing is unfortunately declining in the region. Rolwaling requires immediate conservation attention for the continued survival of the endangered snow leopard and other high altitude flora and fauna.
|
Ale, S. B. (1994). Snow Leopard in Remote Districts of Nepal (Vol. xii). Seattle: Islt.
|
Ale, S. B. (1998). Religion and Snow Leopards in Nepal (Vol. xvi). Seattle: Islt.
|
Ale, S. B., & Karky, B. S. (2002). Observations on Conservation of Snow Leopards in Nepal.. Islt: Islt.
Abstract: The wild populations of snow leopards are threatened in Nepal. For their effective conservation, this paper seeks to build a strategy based not only on protected enclaves but also on landscapes, using an integrated grass-roots approach that essentially reduces poverty and addresses the needs of human beings and that of wildlife. Also equally relevant in places with a strong hold by religious and cultural authorities in the decision-making processes is the recognition and possible integration of cultural and traditional belief systems in overall snow leopard conservation schemes.
|
Ale, S. B., Yonzon, P., & Thapa, K. (2007). Recovery of snow leopard Uncia uncia in Sagarmatha (Mount Everest) National Park, Nepal (Vol. 41).
Abstract: From September to November 2004 we conducted surveys of snow leopard Uncia uncia signs in three major valleys in Sagarmatha (Mount Everest) National Park in Nepal using the Snow Leopard Information Management System, a standardized survey technique for snow leopard research. We walked 24 transects covering c. 14 km and located 33 sites with 56 snow leopard signs, and 17 signs incidentally in other areas. Snow leopards appear to have re-inhabited the Park, following their disappearance c. 40 years ago, apparently following the recovery of Himalayan tahr Hemitragus jemlahicus and musk deer Moschus chrysogaster populations. Taken together the locations of all 73 recent snow leopard signs indicate that the species is using predominantly grazing land and shrubland/ open forest at elevations of 3,000-5,000 m, habitat types that are also used by domestic and wild ungulates. Sagarmatha is the homeland of c. 3,500 Buddhist Sherpas with .3,000 livestock. Along with tourism and associated developments in Sagarmatha, traditional land use practices could be used to ensure coexistence of livestock and wildlife, including the recovering snow leopards, and ensure the wellbeing of the Sherpas.
|
Anandakrishnan, M. B. (1998). The snow leopard: Elusive and endangered. The Environmental Magazine, 9(5), 18–19.
Abstract: The snow leopard has never been common, but there may be fewer than 4,000 left in its Himalayan habitat, and poaching and tourism-related development in the region could drive its numbers down further.
|
Anonymous. (1994). Resolutions Conservation of Snow Leopard, Seventh International Snow Leopard Symposium. In J.L.Fox, & D.Jizeng (Eds.), (pp. 329–331). Usa: Islt.
|
Anonymous. (2004, 28 February). Nepali newspaper article reporting on snow leopard study., 1.
|
Aryal, A. (2009). Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal.
Abstract: A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has
supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively.
|
Bajimaya, S. (2001). Snow leopard manual: field study techniques for the kingdom of Nepal. Kathmandu, Nepal: WWF Nepal Program.
|
Bajimaya, S., Baral N., & Yadav L.B. (1990). Report on Overall Assessment of Dhorpatan Hunting Reserve.
|
Baral N., Stern, M., & Heinen, J. T. (2007). Integrated conservation and development project life cycles in the Annapurna Conservation Area, Nepal: Is development overpowering conservation? Biodiversity Conservation, 16(10), 2903–2917.
Abstract: The merits of integrated conservation and development projects (ICDPs), which aim to provide development incentives to citizens in return for conservation behaviors, have long been debated in the literature. Some of the most common critiques suggest that conservation activities tend to be strongly overpowered by development activities. We studied this assertion through participant observation and archival analysis of five Conservation Area Management Committees (CAMCs) in the Annapurna Conservation Area (ACA), Nepal. Committee activities were categorized as conservation activities (policy development and conservation implementation), development activities (infrastructure, health care, education, economic development, and sanitation), or activities related to institutional strengthening (administrative development and capacity building activities). Greater longevity of each ICDP was associated with greater conservation activity in relation to development activities. Project life cycles progressed from a focus on development activities in their early stages, through a transitional period of institutional strengthening, and toward a longer-term focus that roughly balanced conservation and development activities. Results suggest that the ICDP concept, as practiced in ACA, has been successful at building capacity for and interest in conservation amongst local communities. However, success has come over a period of nearly a decade, suggesting that prior conclusions about ICDP failures may have been based on unrealistic expectations of the time needed to influence behavioral changes in target populations.
|
Barnes, L. J. (1989). The Overt Illegal Fur Trade in Kathmandu, Nepal.
|
Chalise, M. K. (2008). Nepalka Samrakshit Banyajantu (Nepal's Protected Wildlife in Nepali language). Lalitpur, Kathmandu: Shajha Prakashan.
|
Dhungel, S. (1994). Conservation of the Snow Leopard in Nepal. In J. L. Fox, & D. Jezing (Eds.), (pp. 47–50). Usa: Islt.
|
Dhungel, S. K. (1982). A glimpse of Sagarmatha: world's highest national park. Tigerpaper, IX(2), 11–14.
|
Fox, J. L. (1974). An ecological survey of the proposed Langtang National Park.
Abstract: Reports probable sighn of snow leopard at two high elevation points in the Langtang National Park
|
Fox, J. L. (1989). A review of the status and ecology of the snow leopard (Panthera uncia).
|
Fox, J. L. (1994). Snow leopard conservation in the wild – a comprehensive perspective on a low density and highly fragmented population. In J.Fox, & J.Du (Eds.), (pp. 3–15). Usa: Islt.
|
Fox, J. L., & Jackson, R. M. (2002). Blue Sheep and Snow Leopards in Bhutan and Trans-Himalayan Nepal: Recent Status Evaluations and Their Application to Research and Conservation.. Islt: Islt.
|
Gajurel, D. (2006). Snow Leopards Found in Nepal's Langtang National Park (Editor-in-Chief Sunny Lewis and Managing Editor Jim Crabtree, Ed.). Environment News Service.
|
Green, M. (1981). A check-list and some notes concerning the mammlas of the Langtang National Park, Nepal. Journal of the Bombay Natural History Society, 78(1), 77–87.
|