|
Begg, T. (1978). Nutritional bone disease in the snow leopard. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards, Vol. 1 (Vol. 1, pp. 104–107). Helsinki: Helsinki Zoo.
|
|
|
Chaudhuri, S., Mukherjee, S. K., Chatterjee, A., & Ganguli, J. L. (1992). Isolation of P multocida F-3, 4 from a stillborn snow leopard. Vet Rec, 130(2), 36.
|
|
|
Clyde, V. L., Ramsay, E. C., & Bemis, D. A. (1997). Fecal shedding of Salmonella in exotic felids. J.Zoo Wildl.Med, 28(2), 148–152.
Abstract: The authors discuss the occurrence of salmonellosis in collections of exotic felids. Data suggest that zoo employees having contact with cat feces or raw diets have a high rate of occupational exposure to Salmonella and should exercise appropriate hygienic precautions. pcp
|
|
|
Gosselin, S. J., Loudy, D. L., Tarr, M. J., Balistreri, W. F., Setchell, K. D., Johnston, J. O., et al. (1988). Veno-occlusive disease of the liver in captive cheetah. Vet Pathol, 25(1), 48–57.
Abstract: Liver tissues from 126 captive cheetah were evaluated by light microscopy and histochemistry; eight animals were evaluated by electron microscopy. The main hepatic lesion, a vascular lesion resembling veno- occlusive disease (VOD) of the liver and characterized by subendothelial fibrosis and proliferation of smooth muscle-like cells in the central veins, was seen in 60% of the sexually mature cheetah. Although this hepatic vascular lesion was seen in cheetah as young as 1 year of age, the most severe lesions, usually associated with liver failure, were found in cheetah between the ages of 6 and 11. There was no sex predisposition, and in approximately 40% of the VOD cases, liver disease was not suspected clinically or at necropsy. VOD was found in other felidae, especially in the snow leopard. High levels of vitamin A in livers, as well as in diets of the cheetah, could be a contributing factor in the development of VOD in some groups of cheetah.
|
|
|
Green, R. (1977). Toxoplasmosis: Blood disease in cats can strike man as well. Seattle Times.
|
|
|
Helman, R. G., Russell, W. C., Jenny, A., Miller, J., & Payeur, J. (1998). Diagnosis of tuberculosis in two snow leopards using polymerase chain reaction (Vol. 10).
Abstract: The incidence of tuberculosis in zoological animal collections is low, and the disease is monitored through skin testing primarily in primates and artiodactylids.15,16 Other exotic animals are clearly at risk; tuberculosis has been described in elephants (Mycobacterium tuberculosis, M. bovis), rhinoceros (M. bovis), felids (M. bovis), foxes (M. bovis), birds (M. avium complex, M. tuberculosis, M. bovis), and reptiles, amphibians, and fish (cryophilic Mycobacterium species). 1,2,4,6,8-10,13,14,17 Mycobacterial infections in mammals and birds serve as a potential source of disease that can spread to other animals and to humans.7,15,16 In humans, M. bovis and M. tuberculosis are the most important mycobacteria in the USA.
|
|
|
Isenbugel, E., Weilenmann, P., & Rubel, A. (1994). Breeding of snow leopards in the zoo of Zurich: veterinary aspects. In J.L.Fox, & and D.Jizeng (Eds.), (pp. 201–202). Usa: Islt.
|
|
|
Jafri, R. H., & Shah, F. (1994). The role of education and research in the conservation of snow leopard and its habitat in Northern Pakistan. In J.L.Fox, & D.Jizeng (Eds.), (pp. 273–277). Usa: Islt.
|
|
|
Kazensky, C. A., Munson, L., & Seal, U. S. (1998). The effects of melengestrol acetate on the ovaries of captive wild felids. Journal-of-Zoo-and-Wildlife-Medicine, 29(1), 1–5.
Abstract: Melengestrol acetate (MGA) is the most widely used contraceptive in zoo felids, but the mechanism of contraception and the pathologic effects have not been investigated. For this study, the effects of MGA on folliculogenesis were assessed, and the association of MGA with ovarian lesions was evaluated. Comparisons were made among the histopathologic findings in the ovaries from 88 captive wild felids (representing 15 species) divided into three groups: 37 currently contracepted with MGA, eight previously exposed to MGA, and 43 never contracepted. Ninety-one percent of the felids evaluated had tertiary follicles, and no differences were noted between contracepted and uncontracepted cats. Some MGA-contracepted cats also had corpora lutea indicating recent ovulation. These results indicate that folliculogenesis is not suppressed by current doses of MGA and ovulation occurred in some cats. Therefore, the contraceptive actions of MGA do not occur by suppressing folliculogenesis, and MGA-contracepted felids likely have endogenous estrogens that may confound progestin effects on the uterus. Cystic rete ovarii was the most common pathologic finding, but they were not more prevalent in MGA-contracepted cats. These findings indicate that MGA is not associated with ovarian disease, including ovarian cancer, in contrast to the uterine lesions noted in MGA-treated cats.
|
|
|
Khanyari, M., Suryawanshi, K. R., Milner-Gulland, E. J., Dickinson, E., Khara, A., Rana, R. S., Vineer, H. R., Morgan, E. R. (2021). Predicting Parasite Dynamics in Mixed-Use Trans-Himalayan Pastures to Underpin Management of Cross-Transmission Between Livestock and Bharal. Frontiers in Veterinary Science, 8(714241), 1–21.
Abstract: The complexities of multi-use landscapes require sophisticated approaches to addressing disease transmission risks. We explored gastro-intestinal nematode (GINs) infections in the North India Trans-Himalayas through a socio-ecological lens, integrating parasite transmission modelling with field surveys and local knowledge, and evaluated the likely effectiveness of potential interventions. Bharal (blue sheep; Pseudois nayaur), a native wild herbivore, and livestock share pasture year-round and livestock commonly show signs of GINs infection. While both wild and domestic ungulates had GINs infections, egg counts indicated significantly higher parasite burdens in bharal than livestock. However, due to higher livestock densities, they contributed more to the total count of eggs and infective larvae on pasture. Herders also reported health issues in their sheep and goats consistent with parasite infections. Model simulations suggested that pasture infectivity in this system is governed by historical pasture use and gradually accumulated larval development during the summer, with no distinct short-term flashpoints for transmission. The most effective intervention was consequently predicted to be early-season parasite suppression in livestock using temperature in spring as a cue. A 1-month pause in egg output from livestock could lead to a reduction in total annual availability of infective larvae on pasture of 76%, potentially benefitting the health of both livestock and bharal. Modelling suggested that climate change over the past 33 years has led to no overall change in GINs transmission potential, but an increase in the relative influence of temperature over precipitation in driving pasture infectivity. Our study provides a transferable multi-pronged approach to investigating disease transmission, in order to support herders’ livelihoods and conserve wild ungulates.
|
|