toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chetri, M, Odden, M., Sharma, K., Flagstad, O., Wegge, P url 
  Title Estimating snow leopard density using fecal DNA in a large landscape in north-central Nepal Type Journal Article
  Year 2019 Publication Global Ecology and Conservation Abbreviated Journal  
  Volume (down) Issue 17 Pages 1-8  
  Keywords Panthera uncia, Density, Annapurna-Manaslu landscape, Noninvasive, Spatial scale  
  Abstract Although abundance estimates have a strong bearing on the conservation status of a

species, less than 2% of the global snow leopard distribution range has been sampled

systematically, mostly in small survey areas. In order to estimate snow leopard density

across a large landscape, we collected 347 putative snow leopard scats from 246 transects

(490 km) in twenty-six 5  5km sized sampling grid cells within 4393 km2 in Annapurna-

Manaslu, Nepal. From 182 confirmed snow leopard scats, 81 were identified as belonging

to 34 individuals; the remaining were discarded for their low (<0.625) quality index. Using

maximum likelihood based spatial capture recapture analysis, we developed candidate

model sets to test effects of various covariates on density and detection of scats on transects.

The best models described the variation in density as a quadratic function of

elevation and detection as a linear function of topography. The average density estimate of

snow leopards for the area of interest within Nepal was 0.95 (SE 0.19) animals per 100 km2

(0.66e1.41 95% CL) with predicted densities varying between 0.1 and 1.9 in different parts,

thus highlighting the heterogeneity in densities as a function of habitat types. Our density

estimate was low compared to previous estimates from smaller study areas. Probably,

estimates from some of these areas were inflated due to locally high abundances in overlap

zones (hotspots) of neighboring individuals, whose territories probably range far beyond

study area borders. Our results highlight the need for a large-scale approach in snow

leopard monitoring, and we recommend that methodological problems related to spatial

scale are taken into account in future snow leopard research.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1478  
Permanent link to this record
 

 
Author Aruge, S., Batool, H., Khan, F. M., Abbas, F. I., Janjua, S url 
  Title A pilot study&#65533;genetic diversity and population structure of snow leopards of Gilgit-Baltistan, Pakistan, using molecular techniques. Type Journal Article
  Year 2019 Publication PeerJ Abbreviated Journal  
  Volume (down) Issue 7672 Pages 1-14  
  Keywords Population, Genetics, Panthera uncia, Pakistan, Molecular markers  
  Abstract Background: The Hindu Kush and Karakoram mountain ranges in Pakistan&#65533;s northern areas are a natural habitat of the snow leopard (Panthera uncia syn. Uncia uncia) but the ecological studies on this animal are scarce since it is human shy by nature and lives in dif!cult mountainous tracts. The pilot study is conducted to exploit the genetic diversity and population structure of the snow leopard in this selected natural habitat of the member of the wildcat family in Pakistan.

Method: About 50 putative scat samples of snow leopard from !ve localities of Gilgit-Baltistan (Pakistan) along with a control sample of zoo maintained male snow leopard were collected for comparison. Signi!cant quality and quantity of genomic DNA was extracted from scat samples using combined Zhang&#65533;phenol&#65533;chloroform method and successful ampli!cation of cytochrome c oxidase I gene (190 bp) using mini-barcode primers, seven simple sequence repeats (SSR) markers and Y-linked AMELY gene (200 bp) was done.

Results: Cytochrome c oxidase I gene sequencing suggested that 33/50 (66%) scat samples were of snow leopard. AMELY primer suggested that out of 33 ampli!ed samples, 21 (63.63%) scats were from male and 12 (36.36%) from female leopards. Through successful ampli!cation of DNA of 25 out of 33 (75.75%) scat samples using SSR markers, a total of 68 alleles on seven SSR loci were identi!ed, showing low heterozygosity, while high gene "ow between population.

Discussion: The low gene flow rate among the population results in low genetic diversity causing decreased diversi!cation. This affects the adaptability to climatic changes, thus ultimately resulting in decreased population size of the species.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1491  
Permanent link to this record
 

 
Author Samelius, G., Suryawanshi, K., Frank, J., Agvaantseren, B., Baasandamba, E., Mijiddorj, T., Johansson, O., Tumursukh, L., Mishra, C. url 
  Title Keeping predators out: testing fences to reduce livestock depredation at night-time corrals Type Journal Article
  Year 2020 Publication Oryx Abbreviated Journal  
  Volume (down) Issue Pages 1-7  
  Keywords Canis lupus, carnivore conservation, coexistence, conflict mitigation, conservation conflict, livestock depreda- tion, Panthera uncia, preventative measure  
  Abstract Livestock depredation by large carnivores is a global conservation challenge, and mitigation measures to reduce livestock losses are crucial for the coexistence of large carnivores and people. Various measures are employed to reduce livestock depredation but their effectiveness has rarely been tested. In this study, we tested the effectiveness of tall fences to reduce livestock losses to snow leopards Panthera uncia and wolves Canis lupus at night-time corrals at the winter camps of livestock herders in the Tost Mountains in southern Mongolia. Self-reported livestock losses at the fenced corrals were reduced from a mean loss of 3.9 goats and sheep per family and winter prior to the study to zero losses in the two winters of the study. In contrast, self-reported livestock losses in winter pastures, and during the rest of the year, when herders used different camps, remained high, which indicates that livestock losses were reduced because of the fences, not because of temporal variation in predation pressure. Herder attitudes towards snow leopards were positive and remained positive during the study, whereas attitudes towards wolves, which attacked livestock also in summer when herders moved out on the steppes, were negative and worsened during the study. This study showed that tall fences can be very effective at reducing night-time losses at corrals and we conclude that fences can be an important tool for snow leopard conservation and for facilitating the coexistence of snow leopards and people.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1492  
Permanent link to this record
 

 
Author Poyarkov, A. D., Munkhtsog, B., Korablev, M. P., Kuksin, A. N., Alexandrov, D. Y., Chistopolova, M. D.,Hernandez-Blanco, J. A., Munkhtogtokh, O., Karnaukhov, A. S., Lkhamsuren, N., Bayaraa, M., Jackson, R. M., Maheshwari, A., Rozhnov, V. V. url 
  Title Assurance of the existence of a trans-boundary population of the snow leopard (Panthera uncia) at Tsagaanshuvuut – Tsagan- Shibetu SPA at the Mongolia-Russia border Type Journal Article
  Year 2020 Publication Integrative Zoology Abbreviated Journal  
  Volume (down) Issue 15 Pages 224-231  
  Keywords FST, home range, Panthera uncia, snow leopard, trans-boundary population  
  Abstract The existence of a trans-boundary population of the snow leopard (Panthera uncia) that inhabits the massifs of Tsagaanshuvuut (Mongolia) – Tsagan-Shibetu (Russia) was determined through non-invasive genetic analysis of scat samples and by studying the structure of territory use by a collared female individual. The genetic analysis included species identification of samples through sequencing of a fragment of the cytochrome b gene and individual identification using a panel of 8 microsatellites. The home range of a female snow leopard marked with a satellite Global Positioning System (GPS) collar was represented by the minimum convex polygon method (MCP) 100, the MCP 95 method and the fixed kernel 95 method. The results revealed insignificant genetic differentiation between snow leopards that inhabit both massifs (minimal fixation index [FST]), and the data testify to the unity of the cross-border group. Moreover, 5 common individuals were identified from Mongolian and Russian territories. This finding clearly shows that their home range includes territories of both countries. In addition, regular movement of a collared snow leopard in Mongolia and Russia confirmed the existence of a cross-border snow leopard group. These data support that trans-boundary conservation is important for snow leopards in both countries. We conclude that it is crucial for Russia to study the northern range of snow leopards in Asia.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1493  
Permanent link to this record
 

 
Author Johansson, O., Ausilio, G., Low, M., Lkhagvajav, P., Weckworth, B., Sharma, K. url 
  Title The timing of breeding and independence for snow leopard females and their cubs. Type Journal Article
  Year 2020 Publication Mammalian Biology Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords Age of independence; Life-history trade-offs; Panthera uncia; Parental care; Pre-dispersal behavior; Separation; Subadult  
  Abstract Significant knowledge gaps persist on snow leopard demography

and reproductive behavior. From a GPS-collared population in Mongolia,

we estimated the timing of mating, parturition and independence. Based

on three mother–cub pairs, we describe the separation phase of the cub

from its mother as it gains independence. Snow leopards mated from

January–March and gave birth from April–June. Cubs remained with their

mother until their second winter (20–22 months of age) when cubs started

showing movements away from their mother for days at a time. This

initiation of independence appeared to coincide with their mother mating

with the territorial male. Two female cubs remained in their mothers’

territory for several months after initial separation, whereas the male

cub quickly dispersed. By comparing the relationship between body size

and age of independence across 11 solitary, medium-to-large felid

species, it was clear that snow leopards have a delayed timing of

separation compared to other species. We suggest this may be related to

their mating behavior and the difficulty of the habitat and prey capture

for juvenile snow leopards. Our results, while limited, provide

empirical estimates for understanding snow leopard ecology and for

parameterizing population models.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1613  
Permanent link to this record
 

 
Author Korablev, M. P., Poyarkov, A. D., Karnaukhov, A. S., Zvychaynaya, E. Y., Kuksin, A. N., Malykh, S. V., Istomov, S. V., Spitsyn, S. V., Aleksandrov, D. Y., Hernandez-Blanco, J. A., Munkhtsog, B., Munkhtogtokh, O., Putintsev, N. I., Vereshchagin, A. S., Becmurody, A., Afzunov, S., Rozhnov, V. V. url 
  Title Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. Type Journal Article
  Year 2021 Publication Conservation Genetics Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords Snow leopard, Panthera uncia, Microsatellites, Heterozygosity, Population structure, Noninvasive survey, Scat, Subspecies  
  Abstract The snow leopard (Panthera uncia Schreber, 1776) population in Russia and Mongolia is situated at the northern edge of the range, where instability of ecological conditions and of prey availability may serve as prerequisites for demographic instability and, consequently, for reducing the genetic diversity. Moreover, this northern area of the species distribution is connected with the western and central parts by only a few small fragments of potential habitats in the Tian-Shan spurs in China and Kazakhstan. Given this structure of the range, the restriction of gene flow between the northern and other regions of snow leopard distribution can be expected. Under these conditions, data on population genetics would be extremely important for assessment of genetic diversity, population structure and gene flow both at regional and large-scale level. To investigate large-scale and fine-grain population structure and levels of genetic diversity we analyzed 108 snow leopards identified from noninvasively collected scat samples from Russia and Mongolia (the northern part of the range) as well as from Kyrgyzstan and Tajikistan (the western part of the range) using panel of eight polymorphic microsatellites. We found low to moderate levels of genetic diversity in the studied populations. Among local habitats, the highest heterozygosity and allelic richness were recorded in Kyrgyzstan (He = 0.66 ± 0.03, Ho = 0.70 ± 0.04, Ar = 3.17) whereas the lowest diversity was found in a periphery subpopulation in Buryatia Republic of Russia (He = 0.41 ± 0.12, Ho = 0.29 ± 0.05, Ar = 2.33). In general, snow leopards from the western range exhibit greater genetic diversity (He = 0.68 ± 0.04, Ho = 0.66 ± 0.03, Ar = 4.95) compared to those from the northern range (He = 0.60 ± 0.06, Ho = 0.49 ± 0.02, Ar = 4.45). In addition, we have identified signs of fragmentation in the northern habitat, which have led to significant genetic divergence between subpopulations in Russia. Multiple analyses of genetic structure support considerable genetic differentiation between the northern and western range parts, which may testify to subspecies subdivision of snow leopards from these regions. The observed patterns of genetic structure are evidence for delineation of several management units within the studied populations, requiring individual approaches for conservation initiatives, particularly related to translocation events. The causes for the revealed patterns of genetic structure and levels of genetic diversity are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1633  
Permanent link to this record
 

 
Author Koju. N. P, , Bashyal, B., Pandey, B. P., Shah, S. N., Thami, S. ,Bleisch, W. V. url 
  Title First camera-trap record of the snow leopard Panthera uncia in Gaurishankar Conservation Area, Nepal Type Journal Article
  Year 2020 Publication Oryx Abbreviated Journal  
  Volume (down) Issue Pages 1-4  
  Keywords Camera trap, corridor, Gaurishankar Conser- vation Area, Nepal, Panthera uncia, prey abundance, transboundary, snow leopard  
  Abstract The snow leopard Panthera uncia is the flagship species of the high mountains of the Himalayas. There is po- tentially continuous habitat for the snow leopard along the northern border of Nepal, but there is a gap in information about the snow leopard in Gaurishankar Conservation Area. Previous spatial analysis has suggested that the Lamabagar area in this Conservation Area could serve as a transbound- ary corridor for snow leopards, and that the area may con- nect local populations, creating a metapopulation. However, there has been no visual confirmation of the species in Lamabagar. We set !! infrared camera traps for " months in Lapchi Village of Gaurishankar Conservation Area, where blue sheep Pseudois nayaur, musk deer Moschus leucogaster and Himalayan tahr Hemitragus jemlahicus, all snow leopard prey species, had been observed. In November #$!% at &,!$$ m, ' km south-west of Lapchi Village, one camera recorded three images of a snow leopard, the first photographic evidence of the species in the Conservation Area. Sixteen other species of mammals were also recorded. Camera-trap records and sightings indicated a high abun- dance of Himalayan tahr, blue sheep and musk deer. Lapchi Village may be a potentially important corridor for snow leopard movement between the east and west of Nepal and northwards to Quomolongma National Park in China. However, plans for development in the region present in- creasing threats to this corridor. We recommend develop- ment of a transboundary conservation strategy for snow leopard conservation in this region, with participation of Nepal, China and international agencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1622  
Permanent link to this record
 

 
Author Atzeni, L., Cushman, S. A., Bai, D., Wang, J., Chen, P., Shi, K., Riordan, P. url 
  Title Meta-replication, sampling bias, and multi-scale model selection: A case study on snow leopard (Panthera uncia) in western China. Type Journal Article
  Year 2020 Publication Ecology and Evolution Abbreviated Journal  
  Volume (down) Issue Pages 1-27  
  Keywords MaxEnt, meta-replication, multi-scale, Panthera uncia, sampling bias, scale selection, snow leopard, species distribution model  
  Abstract Replicated multiple scale species distribution models (SDMs)

have become increasingly important to identify the correct variables

determining species distribution and their influences on ecological

responses. This study explores multi-scale habitat relationships of the

snow leopard (Panthera uncia) in two study areas on the Qinghai–Tibetan

Plateau of western China. Our primary objectives were to evaluate the

degree to which snow leopard habitat relationships, expressed by

predictors, scales of response, and magnitude of effects, were

consistent across study areas or locally landcape-specific. We coupled

univariate scale optimization and the maximum entropy algorithm to

produce multivariate SDMs, inferring the relative suitability for the

species by ensembling top performing models. We optimized the SDMs based

on average omission rate across the top models and ensembles’ overlap

with a simulated reference model. Comparison of SDMs in the two study

areas highlighted landscape-specific responses to limiting factors.

These were dependent on the effects of the hydrological network,

anthropogenic features, topographic complexity, and the heterogeneity of

the landcover patch mosaic. Overall, even accounting for specific local

differences, we found general landscape attributes associated with snow

leopard ecological requirements, consisting of a positive association

with uplands and ridges, aggregated low-contrast landscapes, and large

extents of grassy and herbaceous vegetation. As a means to evaluate the

performance of two bias correction methods, we explored their effects on

three datasets showing a range of bias intensities. The performance of

corrections depends on the bias intensity; however, density kernels

offered a reliable correction strategy under all circumstances. This

study reveals the multi-scale response of snow leopards to environmental

attributes and confirms the role of meta-replicated study designs for

the identification of spatially varying limiting factors. Furthermore,

this study makes important contributions to the ongoing discussion about

the best approaches for sampling bias correction.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1616  
Permanent link to this record
 

 
Author Chetri, M., Odden, M., Devineau, O., McCarthy, T., Wegge, P. url 
  Title Multiple factors influence local perceptions of snow leopards and Himalayan wolves in the central Himalayas, Nepal. Type Journal Article
  Year 2020 Publication PeerJ Abbreviated Journal  
  Volume (down) Issue Pages 1-18  
  Keywords Panthera uncia, Canis lupus chanco, Perceptions, Large carnivores, Trans-Himalayas  
  Abstract An understanding of local perceptions of carnivores is

important for conservation and management planning. In the central

Himalayas, Nepal, we interviewed 428 individuals from 85 settlements

using a semi-structured questionnaire to quantitatively assess local

perceptions and tolerance of snow leopards and wolves. We used

generalized linear mixed effect models to assess influential factors,

and found that tolerance of snow leopards was much higher than of

wolves. Interestingly, having experienced livestock losses had a minor

impact on perceptions of the carnivores. Occupation of the respondents

had a strong effect on perceptions of snow leopards but not of wolves.

Literacy and age had weak impacts on snow leopard perceptions, but the

interaction among these terms showed a marked effect, that is, being

illiterate had a more marked negative impact among older respondents.

Among the various factors affecting perceptions of wolves, numbers of

livestock owned and gender were the most important predictors. People

with larger livestock herds were more negative towards wolves. In terms

of gender, males were more positive to wolves than females, but no such

pattern was observed for snow leopards. People’s negative perceptions

towards wolves were also related to the remoteness of the villages.

Factors affecting people’s perceptions could not be generalized for the

two species, and thus need to be addressed separately. We suggest future

conservation projects and programs should prioritize remote settlements.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1615  
Permanent link to this record
 

 
Author Oberosler, V., Tenan, S., Groff, C., Krofel, M., Augugliaro, C., Munkhtsog, B., Rovero, F. pdf 
  Title First spatially‐explicit density estimate for a snow leopard population in the Altai Mountains Type Journal Article
  Year 2021 Publication Biodiversity and Conservation Abbreviated Journal  
  Volume (down) Issue Pages 15  
  Keywords Camera trapping · Conservation · Abundance · Felids · Activity range · Mongolia · Panthera uncia · Spatial capture-recapture  
  Abstract The snow leopard Panthera uncia is an elusive and globally-threatened apex predator occurring in the mountain ranges of central Asia. As with other large carnivores, gaps in data on its distribution and abundance still persist. Moreover, available density estimates are often based on inadequate sampling designs or analytical approaches. Here, we used camera trapping across a vast mountainous area (area of the sampling frame 850 km2; analysed habitat extent 2600 km2) and spatially-explicit capture-recapture (SECR) models to provide, to our knowledge, the first robust snow leopard population density estimate for the Altai Mountains. This region is considered one of the most important conservation areas for snow leopards, representing a vast portion of suitable habitat and a key ecological corridor. We also provide estimates of the scale parameter (σ) that reflects ranging behaviour (activity range) and baseline encounter probability, and investigated potential drivers of density and related parameters by assessing their associations with anthropogenic and environmental factors. Sampling yielded 9729 images of snow leopards corresponding to 224 independent detections that belonged to a minimum of 23 identified adult individuals. SECR analysis resulted in an overall density of 1.31 individuals/100 km2 (1.15%–1.50 95% CI), which was positively correlated with terrain slope. This estimate falls within the mid-values of the range of density estimates for the species globally. We estimated significantly different activity range size for females and males (79 and 329 km2, respectively). Base- line encounter probability was negatively associated with anthropogenic activity. Our study contributes to on-going efforts to produce robust global estimates of population abundance for this top carnivore.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1662  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: