toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Waits, L.P.; Buckley-Beason, V.A.; Johnson, W.E.; Onorato, D.; McCarthy, T. url 
  Title (up) A select panel of polymorphic microsatellite loci for individual identification of snow leopards (Panthera uncia)  Type Miscellaneous
  Year 2006 Publication Molecular Ecology Notes Abbreviated Journal  
  Volume 7 Issue Pages 311-314  
  Keywords identification; leopard; leopards; microsatellites,noninvasive genetic sampling,Panthera uncia,snow leopard; panthera; Panthera-uncia; panthera uncia; snow; snow-leopard; snow-leopards; snow leopard; snow leopards; uncia; endangered; carnivores; carnivore; mountain; region; central; Central Asia; asia; methods; conservation; management; Molecular; individual identification; Hair; domestic; cat; felis; captive; number; probability; using; wild  
  Abstract Snow leopards (Panthera uncia) are elusive endangered carnivores found in remote mountain regions of Central Asia. New methods for identifying and counting snow leopards are needed for conservation and management efforts. To develop molecular genetic tools for individual identification of hair and faecal samples, we screened 50 microsatellite loci developed for the domestic cat (Felis catus) in 19 captive snow leopards. Forty-eight loci were polymorphic with numbers of alleles per locus ranging from two to 11. The probability of observing matching genotypes for unrelated individuals (2.1 x10-11) and siblings (7.5x10-5) using the 10 most polymorphic loci was low, suggesting that this panel would easily discriminate among individuals in the wild.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 865 Serial 1001  
Permanent link to this record
 

 
Author McCarthy, K.; Fuller, T.; Ming, M.; McCarthy, T.; Waits, L.; Jumabaev, K. url 
  Title (up) Assessing Estimators of Snow Leopard Abundance Type Miscellaneous
  Year 2008 Publication Journal of Widlife Management Abbreviated Journal  
  Volume 72 Issue 8 Pages 1826-1833  
  Keywords abundance; camera,capture-recapture,density,index,predator:prey ratios,techniques,Tien Shan,Uncia; leopard; SaryChat; sign surveys; Slims; snow; snow-leopard; snow leopard; Tomur  
  Abstract The secretive nature of snow leopards (Uncia uncia) makes them difficult to monitor, yet conservation efforts require accurate and precise methods to estimate abundance. We assessed accuracy of Snow Leopard Information Management System (SLIMS) sign surveys by comparing them with 4 methods for estimating snow leopard abundance: predator:prey biomass ratios, capture-recapture density estimation, photo-capture rate, and individual identification through genetic analysis. We recorded snow leopard sign during standardized surveys in the SaryChat Zapovednik, the Jangart hunting reserve, and the Tomur Strictly Protected Area, in the Tien Shan Mountains of Kyrgyzstan and China. During June-December 2005, adjusted sign averaged 46.3 (SaryChat), 94.6 (Jangart), and 150.8 (Tomur) occurrences/km. We used

counts of ibex (Capra ibex) and argali (Ovis ammon) to estimate available prey biomass and subsequent potential snow leopard densities of 8.7 (SaryChat), 1.0 (Jangart), and 1.1 (Tomur) snow leopards/100 km2. Photo capture-recapture density estimates were 0.15 (n = 1 identified individual/1 photo), 0.87 (n = 4/13), and 0.74 (n = 5/6) individuals/100 km2 in SaryChat, Jangart, and Tomur, respectively. Photo-capture rates

(photos/100 trap-nights) were 0.09 (SaryChat), 0.93 (Jangart), and 2.37 (Tomur). Genetic analysis of snow leopard fecal samples provided minimum population sizes of 3 (SaryChat), 5 (Jangart), and 9 (Tomur) snow leopards. These results suggest SLIMS sign surveys may be affected by observer bias and environmental variance. However, when such bias and variation are accounted for, sign surveys indicate relative abundances similar to photo rates and genetic individual identification results. Density or abundance estimates based on capture-recapture or ungulate biomass did not agree with other indices of abundance. Confidence in estimated densities, or even detection of significant changes in abundance of snow leopard, will require more effort and better documentation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 881 Serial 653  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: