Sivolobov, R. (2017). ENDANGERED SPECIES OF KORYAKIA AND CHUKOTKA: IRBIS, TIGER AND THE IRKUYEM-BEAR.225–233.
Abstract: After 30 years of searching for the mysterious Beringian snow cat in vast space of Koryakia and Chukotka
one of the five cameras recorded finally this beast at night in September 2014. This is not so much a
sensation as a real scientific discovery, saying that the hearts of the snow leopard population resettlement are
not in 5000 km from the main range boundaries, but much closer. Where? � will show further studies.
In addition to the snow leopard in the North-Eastern Asia, it found two more endangered large
mammal species: the Amur tiger and the relict of the Ice Age � the Irkuyem-bear. Author has given these
animals his life and his article devoted to this topic.
|
Kashkarov, E. (2017). THE SNOW LEOPARD OF KIRGIZIA: NATIONAL SHAME OR NATIONAL PRIDE.239–253.
Abstract: Article examines the problems existing in conservation of the snow leopard in Kirgizia after break-up of the
USSR. Unfortunate situation is common to most of the 14 countries in the snow leopard range, but seems
especially sharp to Kirgizia. Yet half of the century ago Kirgizia has had about 1.5 thousand of the snow
leopards, and today there remains no more than 1/10. In Soviet time Kirgizia was a global supplier of the
snow leopards for the zoo-export � to create a reserve number of endangered cats in captivity. Today, at
least half of the snow leopards in the Zoos of the world are individuals, caught in Kirgizia or their
descendants.
Since independence, Kirgizia has set new records. In Sarychat-Irtash reserve � the best for the snow
leopard in Central Asia, and probably in the whole range � this species was completely destroyed after 3
years of reserve opening... and 17 years later � revived... Situation comes presently back to the worst-case
scenario, and not only for the snow leopard. Author shows how work in this direction social and economic
levers, and what kind future he would like to see in Kirgizia, where he lived for 12 years and was at the
forefront of pioneering research of the snow leopard and its conservation.
Keywords: snow leopard, irbis, ibex, mountain sheep, conservation, range, reserve, monitoring, cameratrap, Sarychat, Kirgizia, Central Asia.
|
Alexander, S., A., Zhang, C., Shi, K., Riordan, P. (2016). A granular view of a snow leopard population using camera traps in Central China. Biological Conservation, (197), 27–31.
Abstract: Successful conservation of the endangered snow leopard (Panthera uncia) relies on the effectiveness of monitoring programmes. We present the results of a 19-month camera trap survey effort, conducted as part of a longterm study of the snow leopard population in Qilianshan National Nature Reserve of Gansu Province, China. Weassessed the minimumnumber of individual snowleopards and population density across different sampling periods using spatial capture–recapture methods. Between 2013–2014, we deployed 34 camera traps across an area of 375 km2, investing a total of 7133 trap-days effort. Weidentified a total number of 17–19 unique individuals
from photographs (10–12 adults, five sub-adults and two cubs). The total number of individuals identified and estimated density varied across sampling periods, between 10–15 individuals and 1.46–3.29 snow leopards per 100 km2 respectively. We demonstrate that snow leopard surveys of limited scale and conducted over short sampling periods only present partial views of a dynamic and transient system.We also underline the challenges in achieving a sufficient sample size of captures and recaptures to assess trends in snow leopard population size and/or density for policy and conservation decision-making
|
Alexander, J. S., Shi, K., Tallents, L. A., Riordan, P. (2015). On the high trail: examining determinants of site use by the Endangered snow leopard Panthera uncia in Qilianshan, China. Oryx, (Fauna & Flora International), 1–8.
Abstract: Abstract There is a need for simple and robust techniques for assessment and monitoring of populations of the Endangered snow leopard Panthera uncia to inform the de- velopment of action plans for snow leopard conservation. We explored the use of occupancy modelling to evaluate the influence of environmental and anthropogenic features on snow leopard site-use patterns. We conducted a camera trap survey across  km in Gansu Province, China, and used data from  camera traps to estimate probabilities of site use and detection using the single season occupancy model. We assessed the influence of three covariates on site use by snow leopards: elevation, the presence of blue sheep Pseudois nayaur and the presence of human disturb- ance (distance to roads). We recorded  captures of snow leopards over , trap-days, representing a mean capture success of . captures per  trap-days. Elevation had the strongest influence on site use, with the probability of site use increasing with altitude, whereas the influence of presence of prey and distance to roads was relatively weak. Our findings indicate the need for practical and robust tech- niques to appraise determinants of site use by snow leo- pards, especially in the context of the limited resources available for such work.
|
Alexander, J. S., Gopalswamy, A. M., Shi, K., Riordan, P. (2015). Face Value: Towards Robust Estimates of Snow Leopard Densities. Plos One, .
Abstract: When densities of large carnivores fall below certain thresholds, dramatic ecological effects
can follow, leading to oversimplified ecosystems. Understanding the population status of
such species remains a major challenge as they occur in low densities and their ranges are
wide. This paper describes the use of non-invasive data collection techniques combined
with recent spatial capture-recapture methods to estimate the density of snow leopards
Panthera uncia. It also investigates the influence of environmental and human activity indicators
on their spatial distribution. A total of 60 camera traps were systematically set up during
a three-month period over a 480 km2 study area in Qilianshan National Nature Reserve,
Gansu Province, China. We recorded 76 separate snow leopard captures over 2,906 trapdays,
representing an average capture success of 2.62 captures/100 trap-days. We identified
a total number of 20 unique individuals from photographs and estimated snow leopard
density at 3.31 (SE = 1.01) individuals per 100 km2. Results of our simulation exercise indicate
that our estimates from the Spatial Capture Recapture models were not optimal to
respect to bias and precision (RMSEs for density parameters less or equal to 0.87). Our
results underline the critical challenge in achieving sufficient sample sizes of snow leopard
captures and recaptures. Possible performance improvements are discussed, principally by
optimising effective camera capture and photographic data quality.
|
Ale, S., Shrestha, B., and Jackson, R. (2014). On the status of Snow Leopard Panthera Uncia (Schreber 1775) in Annapurna, Nepal. Journal of Threatened Taxa, (6(3)), 5534–5543.
|
Thapa, K., Pradhan, N, M, B., Barker, J., Dhakal, M., Bhandari, A, R., Gurung, G, S., Rai, D, P., Thapa, G, J., Shrestha, S., Singh, G, R. (2013). High elevation record of a leopard cat in the Kangchenjunga Conservation Area, Nepal. Cat News, (No 58), 26–27.
Abstract: During a camera trapping survey in Khambachen valley of Kangchenjunga Conservation
Area KCA from 24 April to 26 May 2012 we camera trapped one leopard cat
Prionailurus bengalensis at an altitude of 4,474 meter. This is probably the highest
altitudinal record for the species in its range. Additionally, one melanistic leopard
Panthera pardus was captured at an altitude of 4,300 m, which is probably as well the
highest documented record in the country. Yet at this stage, no obvious reason can
explain these unusual high records for both species, thus more surveys are recommended
for this region.
|
Simms, A., Moheb, Z., Salahudin, Ali, H., Ali, I. & Wood, T. (2011). Saving threatened species in Afghanistan: snow leopards in the Wakhan Corridor. International Journal of Environmental Studies, 68(3), 299–312.
Abstract: The Wakhan Corridor in northeast Afghanistan is an area known for relatively abundant wildlife and it appears to represent Afghanistan’s most important snow leopard landscape. The Wildlife Conservation Society (WCS) has been working in Wakhan since 2006. Recent camera trap surveys have documented the presence of snow leopards at 16 different locations in the landscape. These are the first camera trap records of snow leopards in Afghanistan. Threats to snow leopards in the region include the fur trade, retaliatory killing by shepherds and the capture of live animals for pets. WCS is developing an integrated management approach for this species, involving local governance, protection by a cadre of rangers, education, construction of predator-proof livestock corrals, a livestock insurance program, tourism and research activities. This management approach is expected to contribute significantly to the conservation of snow leopards and other wildlife species in the Wakhan.
|
Ming, M., Munkhtsog, B., McCarthy, T., McCarthy, K. (2011). Monitor ing of Population Density of Snow Leopard in X injiang. Journal of Ecology and Rural Environment, 27(1), 79–83.
Abstract: The snow leopard (Uncia uncia) is a very rare species in China. The survey of traces of snow leopard in Kunlun, Altay and Tianshan is them a instep of the Project of Snow Leopard in X injiang supported by the International Snow Leopard Trust ( SLT) and the Xinjiang Conservation Fund (XCF). During the field survey from 2004 to 2010, the Xinjiang Snow Leopard Group ( XSLG) spent about 270 days in over 20 different places, covering over 150 transects totaling nearly 190 km, and found 1- 3 traces per kilometer. The traces of snow leopard recorded include dung, odor, chains of footprints, scraping, paw nail marks, lying mark, fur, urine, bloodstain, leftover of prey corpse, roaring and others. Based on tracer image analyses, the XSLG got to know primarily scopes of the domains, distribution and relative density of the snow leopard in these areas. Then the group began to take infrared photos, conducted survey of food sources of the leopards, investigated fur market and paths of trading, and cases of killing, and carry out civil survey through questionnaire, non government organization community service and research on conflicts between grazing and wild life protection. A total of 36 infrared came ras were laid out, working a total of about 2 094 days or 50 256 hours. A total 71 rolls of film were collected and developed, includ ing 32 clear pictures of snow leopards, thus making up a shooting rate or capture rate of 1.53%. It was ascertained that in Tomur Peak area, there were 5- 8 snow leopards roaming within a range of 250 km2, forming a population density of 2��0- 3��2 per 100 km2. After compar ing the various monitoring results, the advantages and limitations of different monitoring methods have been discussed.
|
WWF Russia & Mongolia. (2010). WWF Altai-Sayan Newsletter. WWF.
Abstract: A Snow Leopard – A Treasure of Tuva. A beautiful animal as a winner of a wide-scale public vote
WWF will train a Scat Detection Dog for snow leopard monitoring project
WWF assessed the possibility to fight illegal helicopter hunting
WWF considers support of antipoaching activities an essential part of wildlife conservation in Altai – Sayan
Snow Leopard Camera Trapping in Argut River Valley
“Stars” of Tuva appeal to Snow Leopard Conservation
|