|   | 
Details
   web
Records
Author Pahuja, M., Sharma, R. K.
Title Wild Predators, Livestock, and Free Ranging Dogs: Patterns of Livestock Mortality and Attitudes of People Toward Predators in an Urbanizing Trans-Himalayan Landscape Type Journal Article
Year 2021 Publication Frontiers in Conservation Science Abbreviated Journal
Volume (up) 2 Issue 109 Pages 1-13
Keywords Canis lupus, human-wildlife relationships, human-wildlife conflict (HWC), livestock depredation, multiple use landscapes, Panthera uncia, pastoralism, urban wildlife
Abstract Livestock depredation by large carnivores is a significant source of conflicts over predators and an important conservation and economic concern. Preventing livestock loss to wild predators is a substantial focus of human-carnivore conflict mitigation programs. A key assumption of the preventive strategy is reduction in the livestock losses leading to a positive shift in the attitudes toward predators. Therefore, it is important to quantify the true extent of livestock mortality caused by wild predators and its influence on attitudes of the affected communities. We examined seasonal and spatial patterns of livestock mortality and factors influencing people’s attitudes toward wild predators i.e., snow leopards (Panthera uncia) and wolves (Canis lupus chanco) and free-ranging dogs (Canis lupus familiaris) in a Trans-Himalayan urbanizing landscape in India. We used systematic sampling to select the survey households and implemented a semi- structured questionnaire to respondents. The sampled villages (n = 16) represent a mosaic of urban and agricultural ecosystems within a radius of 40 km of Leh town. In 2016–2017, 93% of the sampled households lost livestock to predators, accounting for 0.93 animals per household per year. However, of the total events of livestock mortality, 33% were because of weather/natural events, 24% by snow leopards, 20% because of disease, 15% because of free-ranging dogs and 9% because of wolves. The annual economic loss per household because of livestock mortality was USD 371, a substantial loss given the average per capita income of USD 270 in the region. Of the total loss, weather/natural events caused highest loss of USD 131 (35%), followed by snow leopards USD 91 (25%), disease USD 87 (24%), free ranging dogs USD 48 (13%), and wolves USD 14 (4%). Despite losing a considerable proportion of livestock (33 %) to wild predators, respondents showed a positive attitude toward them but exhibited neutral attitudes toward free-ranging dogs. Gender emerged as the most important determinant of attitudes toward wild predators, with men showing higher positive attitude score toward wild predators than women. Our findings highlight the context specific variation in human-wildlife interactions and emphasize that generalizations must be avoided in the absence of site specific evidence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1667
Permanent link to this record
 

 
Author Khanyari, M., Dorjay, R., Lobzang, S., Bijoor, A., Suryawanshi, K.
Title Co-designing conservation interventions through participatory action research in the Indian Trans-Himalaya Type Journal Article
Year 2023 Publication Ecological Solutions and Evidence Abbreviated Journal
Volume (up) 4 Issue e12232 Pages 1-14
Keywords Changthang, co-design, community, conservation, participatory
Abstract 1. Community-based conservation, despite being more inclusive than fortress conservation, has been criticized for being a top-down implementation of external ideas brought to local communities for conservation's benefit. This is particularly true for Changpas, the pastoral people of Changthang in trans-Himalayan India who live alongside unique wildlife.

2. Our main aim was to co-design conservation interventions through participatory action research. We worked with two Changpa communities, to understand the issues faced by them. Subsequently, we co-designed context-sensitive interventions to facilitate positive human–nature interactions. We did so by integrating the PARTNERS (Presence, Aptness, Respect, Transparency, Empathy, Responsiveness, Strategic Support) principles with the Trinity of Voice (Access, Standing and Influence).

3. In Rupsho, we facilitated focus group discussions (FGDs) led by the community. We found livestock depredation by wildlife was primarily facilitated by the weather. This led to co-designing of a new corral design, which was piloted with seven households, safeguarding 2385 pashmina goats and sheep. Approximating the value of each sheep/goat to be USD125, this intervention amounts to a significant economic protection of USD c. 42,500 for each household. This is along with intangible gains of trust, ownership and improved self-esteem.

4. In Tegazong, a restricted area adjoining the Indo-China border with no previous research records, we worked with 43 Changpa people to co-create research questions of mutual interest. Wildlife presence and reasons for livestock loss were identified as areas of mutual interest. The herders suggested they would record data in a form of their choice, for 6 months, while they live in their winter pastures. This participatory community monitoring revealed nutrition and hypothermia to be a key cause of livestock death. Subsequently, we delimited two previously untested interventions: lamb cribs and provisioning of locally sourced barley as a feed supplement. The wildlife monitoring recorded the first record of Tibetan Gazelle Procapra picticuadata, outside of their known distribution, in Tegazong.

5. We aim to highlight the benefits of co-designing projects with local communities that link research and conservation, while also discussing the challenges faced. Ultimately, such projects are needed to ensure ethical knowledge generation and conservation, which aims to be decolonial and inclusive.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1727
Permanent link to this record
 

 
Author Hellstrom, M., Kruger, E., Naslund, J., Bisther, M., Edlund, A., Hernvall, P., Birgersson, V., Augusto, R., Lancaster, M. L.
Title Capturing environmental DNA in snow tracks of polar bear, Eurasian lynx and snow leopard towards individual identification Type Journal Article
Year 2023 Publication Frontiers in Conservation Science Abbreviated Journal
Volume (up) 4 Issue 1250996 Pages 1-9
Keywords nuclear eDNA, snow, snow track, individual, polar bear (Ursus maritimus), Eurasian lynx (Lynx lynx), snow leopard (Panthera uncia), sampling protocol
Abstract Polar bears (Ursus maritimus), Eurasian lynx (Lynx lynx) and snow leopards (Panthera uncia) are elusive large carnivores inhabiting snow-covered and remote areas. Their effective conservation and management are challenged by inadequate population information, necessitating development of novel data collection methods. Environmental DNA (eDNA) from snow tracks (footprints in snow) has identified species based on mitochondrial DNA, yet its utility for individual-based analyses remains unsolved due to challenges accessing the nuclear genome. We present a protocol for capturing nuclear eDNA from polar bear, Eurasian lynx and snow leopard snow tracks and verify it through genotyping at a selection of microsatellite markers. We successfully retrieved nuclear eDNA from 87.5% (21/24) of wild polar bear snow tracks, 59.1% (26/44) of wild Eurasian lynx snow tracks, and the single snow leopard sampled. We genotyped over half of all wild polar bear samples (54.2%, 13/24) at five loci, and 11% (9/44) of wild lynx samples and the snow leopard at three loci. Genotyping success from Eurasian lynx snow tracks increased to 24% when tracks were collected by trained rather than untrained personnel. Thirteen wild polar bear samples comprised 11 unique genotypes and two identical genotypes; likely representing 12 individual bears, one of which was sampled twice. Snow tracks show promise for use alongside other non-invasive and conventional methods as a reliable source of nuclear DNA for genetic mark-recapture of elusive and threatened mammals. The detailed protocol we present has utility for broadening end user groups and engaging Indigenous and local communities in species monitoring.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1738
Permanent link to this record
 

 
Author Arias, M., Coals, P., Ardiantiono, Elves-Powell, J., Rizzolo, J. B., Ghoddousi, A., Boron, V., da Silva, M., Naude, V., Williams, V., Poudel, S., Loveridge, A., Payan, E., Suryawanshi, K., Dickman, A.
Title Reflecting on the role of human-felid conflict and local use in big cat trade Type Journal Article
Year 2024 Publication Conservation Science and Practice Abbreviated Journal
Volume (up) 6 Issue e13030 Pages 1-7
Keywords conflict, illegal trade, jaguar, leopard, lion, Panthera, snow leopard, tiger, wildlife crime
Abstract Illegal trade in big cat (Panthera spp.) body parts is a prominent topic in scientific and public discourses concerning wildlife conservation. While illegal trade is generally acknowledged as a threat to big cat species, we suggest that two enabling factors have, to date, been under-considered. To that end, we discuss the roles of human-felid conflict, and “local” use in illegal trade in big cat body parts. Drawing examples from across species and regions, we look at generalities, contextual subtleties, ambiguities, and definitional complexities. We caution against underestimating the extent of “local” use of big cats and highlight the potential of conflict killings to supply body parts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1745
Permanent link to this record
 

 
Author Johansson, O., Ullman, K., Lkhagvajav, P., Wiseman, M., Malmsten, J., Leijon, M.
Title Detection and Genetic Characterization of Viruses Present in Free-Ranging Snow Leopards Using Next-Generation Sequencing Type Journal Article
Year 2020 Publication Frontiers in Veterinary Science Abbreviated Journal
Volume (up) 7 Issue 645 Pages 1-9
Keywords snow leopard, free-ranging, virome, Mongolia, rectal swabs, next-generating sequencing, Panthera unica
Abstract Snow leopards inhabit the cold, arid environments of the high

mountains of South and Central Asia. These living conditions likely

affect the abundance and composition of microbes with the capacity to

infect these animals. It is important to investigate the microbes that

snow leopards are exposed to detect infectious disease threats and

define a baseline for future changes that may impact the health of this

endangered felid. In this work, next-generation sequencing is used to

investigate the fecal (and in a few cases serum) virome of seven snow

leopards from the Tost Mountains of Mongolia. The viral species to which

the greatest number of sequences reads showed high similarity was

rotavirus. Excluding one animal with overall very few sequence reads,

four of six animals (67%) displayed evidence of rotavirus infection. A

serum sample of a male and a rectal swab of a female snow leopard

produced sequence reads identical or closely similar to felid

herpesvirus 1, providing the first evidence that this virus infects snow

leopards. In addition, the rectal swab from the same female also

displayed sequence reads most similar to feline papillomavirus 2, which

is the first evidence for this virus infecting snow leopards. The rectal

swabs from all animals also showed evidence for the presence of small

circular DNA viruses, predominantly Circular Rep-Encoding

Single-Stranded (CRESS) DNA viruses and in one case feline anellovirus.

Several of the viruses implicated in the present study could affect the

health of snow leopards. In animals which are under environmental

stress, for example, young dispersing individuals and lactating females,

health issues may be exacerbated by latent virus infections.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1612
Permanent link to this record
 

 
Author Khanyari, M., Suryawanshi, K. R., Milner-Gulland, E. J., Dickinson, E., Khara, A., Rana, R. S., Vineer, H. R., Morgan, E. R.
Title Predicting Parasite Dynamics in Mixed-Use Trans-Himalayan Pastures to Underpin Management of Cross-Transmission Between Livestock and Bharal Type Journal Article
Year 2021 Publication Frontiers in Veterinary Science Abbreviated Journal
Volume (up) 8 Issue 714241 Pages 1 - 21
Keywords disease, Trans-Himalaya, livestock, nematodes, bharal, model, ungulates, grazing
Abstract The complexities of multi-use landscapes require sophisticated approaches to addressing disease transmission risks. We explored gastro-intestinal nematode (GINs) infections in the North India Trans-Himalayas through a socio-ecological lens, integrating parasite transmission modelling with field surveys and local knowledge, and evaluated the likely effectiveness of potential interventions. Bharal (blue sheep; Pseudois nayaur), a native wild herbivore, and livestock share pasture year-round and livestock commonly show signs of GINs infection. While both wild and domestic ungulates had GINs infections, egg counts indicated significantly higher parasite burdens in bharal than livestock. However, due to higher livestock densities, they contributed more to the total count of eggs and infective larvae on pasture. Herders also reported health issues in their sheep and goats consistent with parasite infections. Model simulations suggested that pasture infectivity in this system is governed by historical pasture use and gradually accumulated larval development during the summer, with no distinct short-term flashpoints for transmission. The most effective intervention was consequently predicted to be early-season parasite suppression in livestock using temperature in spring as a cue. A 1-month pause in egg output from livestock could lead to a reduction in total annual availability of infective larvae on pasture of 76%, potentially benefitting the health of both livestock and bharal. Modelling suggested that climate change over the past 33 years has led to no overall change in GINs transmission potential, but an increase in the relative influence of temperature over precipitation in driving pasture infectivity. Our study provides a transferable multi-pronged approach to investigating disease transmission, in order to support herders’ livelihoods and conserve wild ungulates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1673
Permanent link to this record
 

 
Author Esson, C. , Skerratt, L. F. , Berger, L. , Malmsten, J., Strand, T. , Lundkvist, A., Järhult, J. D., Michaux, J., Mijiddorj, T. N., , Bayrakçısmith, R., Mishra, C., Johansson, O
Title Health and zoonotic Infections of snow leopards Panthera unica in the South Gobi desert of Mongolia Type Journal Article
Year 2019 Publication Infection Ecology & Epidemiology Abbreviated Journal
Volume (up) 9 Issue 1604063 Pages 1-11
Keywords Snow leopard; zoonoses; conservation; one health; Mongolia; ticks
Abstract Background: Snow leopards, Panthera uncia, are a threatened apex predator, scattered across the mountains of Central and South Asia. Disease threats to wild snow leopards have not been investigated.

Methods and Results: Between 2008 and 2015, twenty snow leopards in the South Gobi desert of Mongolia were captured and immobilised for health screening and radio-collaring. Blood samples and external parasites were collected for pathogen analyses using enzyme- linked immunosorbent assay (ELISA), microscopic agglutination test (MAT), and next- generation sequencing (NGS) techniques. The animals showed no clinical signs of disease, however, serum antibodies to significant zoonotic pathogens were detected. These patho- gens included, Coxiella burnetii, (25% prevalence), Leptospira spp., (20%), and Toxoplasma gondii (20%). Ticks collected from snow leopards contained potentially zoonotic bacteria from the genera Bacillus, Bacteroides, Campylobacter, Coxiella, Rickettsia, Staphylococcus and Streptococcus.

Conclusions: The zoonotic pathogens identified in this study, in the short-term did not appear to cause illness in the snow leopards, but have caused illness in other wild felids. Therefore, surveillance for pathogens should be implemented to monitor for potential longer- term disease impacts on this snow leopard population.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1625
Permanent link to this record
 

 
Author Karki, A., Panthi, S.
Title Factors affecting livestock depredation by snow leopards (Panthera uncia) in the Himalayan region of Nepal Type Journal Article
Year 2021 Publication PeerJ Abbreviated Journal
Volume (up) 9 Issue e11575 Pages 1-14
Keywords Conflict,Habitat,Himalaya,Livestockdepredation,Modeling,Snowleopard,Wildlife management
Abstract The snow leopard (Panthera uncia) found in central Asia is classified as vulnerable species by the International Union for Conservation of Nature (IUCN). Every year, large number of livestock are killed by snow leopards in Nepal, leading to economic loss to local communities and making human-snow leopard conflict a major threat to snow leopard conservation. We conducted formal and informal stakeholder’s interviews to gather information related to livestock depredation with the aim to map the attack sites by the snow leopard. These sites were further validated by district forest office staffs to assess sources of bias. Attack sites older than 3 years were removed from the survey. We found 109 attack sites and visited all the sites for geo location purpose (GPS points of all unique sites were taken). We maintained at least a 100 m distance between attack locations to ensure that each attack location was unique, which resulted in 86 unique locations. A total of 235 km2 was used to define livestock depredation risk zone during this study. Using Maximum Entropy (MaxEnt) modeling, we found that distance to livestock sheds, distance to paths, aspect, and distance to roads were major contributing factors to the snow leopard’s attacks. We identified 13.64 km2 as risk zone for livestock depredation from snow leopards in the study area. Furthermore, snow leopards preferred to attack livestock near livestock shelters, far from human paths and at moderate distance from motor roads. These identified attack zones should be managed both for snow leopard conservation and livestock protection in order to balance human livelihoods while protecting snow leopards and their habitats.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1640
Permanent link to this record
 

 
Author Lu, Q., Xiao, L., Cheng, C., Lu, Z., Zhao, J., Yao, M.
Title Snow Leopard Dietary Preferences and Livestock Predation Revealed by Fecal DNA Metabarcoding: No Evidence for Apparent Competition Between Wild and Domestic Prey Type Journal Article
Year 2021 Publication Frontiers in Ecology and Evolution Abbreviated Journal
Volume (up) 9 Issue 783546 Pages 1 - 14
Keywords apparent mutualism, blue sheep, feeding habits, molecular dietary analysis, human-carnivore conflict, prey selection, Sanjiangyuan
Abstract Accurate assessments of the patterns and drivers of livestock depredation by wild carnivores are vital for designing effective mitigation strategies to reduce human-wildlife conflict. Snow leopard’s (Panthera uncia) range extensively overlaps pastoralist land- use and livestock predation there is widely reported, but the ecological determinants of livestock consumption by snow leopards remain obscure. We investigated snow leopard dietary habits at seven sites across the Sanjiangyuan region of the Qinghai– Tibetan Plateau (QTP), an area central to the species’ global range. Snow leopard abundance, wild prey composition, and livestock density varied among those sites, thus allowing us to test the effects of various factors on snow leopard diet and livestock predation. Using DNA metabarcoding, we obtained highly resolved dietary data from 351 genetically verified snow leopard fecal samples. We then analyzed the prey preferences of snow leopards and examined ecological factors related to their livestock consumption. Across the sites, snow leopard prey was composed mainly of wild ungulates (mean = 81.5% of dietary sequences), particularly bharal (Pseudois nayaur), and supplemented with livestock (7.62%) and smaller mammals (marmots, pikas, mice; 10.7%). Snow leopards showed a strong preference for bharal, relative to livestock, based on their densities. Interestingly, both proportional and total livestock consumption by snow leopards increased linearly with local livestock biomass, but not with livestock density. That, together with a slight negative relationship with bharal density, supports apparent facilitation between wild and domestic prey. We also found a significant positive correlation between population densities of snow leopard and bharal, yet those densities showed slight negative relationships with livestock density. Our results highlight the importance of sufficient wild ungulate abundance to the conservation of viable snow leopard populations. Additionally, livestock protection is critically needed to reduce losses to snow leopard depredation, especially where local livestock abundances are high.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1675
Permanent link to this record
 

 
Author Shrestha, B., Kindlmann, P.
Title Implications of landscape genetics and connectivity of snow leopard in the Nepalese Himalayas for its conservation. Type Scientific Report
Year 2020 Publication Nature Research Abbreviated Journal
Volume (up) 10 Issue 19853 Pages 1-11
Keywords
Abstract The snow leopard is one of the most endangered large mammals.

Its population, already low, is declining, most likely due to the

consequences of human activity, including a reduction in the size and

number of suitable habitats. With climate change, habitat loss may

escalate, because of an upward shift in the tree line and concomitant

loss of the alpine zone, where the snow leopard lives. Migration between

suitable areas, therefore, is important because a decline in abundance

in these areas may result in inbreeding, fragmentation of populations,

reduction in genetic variation due to habitat fragmentation, loss of

connectivity, bottlenecks or genetic drift. Here we use our data

collected in Nepal to determine the areas suitable for snow leopards, by

using habitat suitability maps, and describe the genetic structure of

the snow leopard within and between these areas. We also determine the

influence of landscape features on the genetic structure of its

populations and reveal corridors connecting suitable areas. We conclude

that it is necessary to protect these natural corridors to maintain the

possibility of snow leopards' migration between suitable areas, which

will enable gene flow between the diminishing populations and thus

maintain a viable metapopulation of snow leopards.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1628
Permanent link to this record