Home | [21–30] << 31 32 33 34 35 36 37 38 39 40 >> [41–50] |
![]() |
Graham, L. H., Goodrowe, K. L., Raeside, J. I., & Liptrap, R. M. (1995). Non-invasive monitoring of ovarian function in several felid species by measurement of fecal estradiol-17-beta and progestins. Zoo Biology, 14(3), 223–237.
Abstract: An extraction and assay procedure to measure fecal estradiol-17-beta and progestin concentrations in several cat species was developed and validated for use for noninvasive monitoring of ovarian function. Fecal samples were collected over a range of 3-20 months from female tigers (three), lions (three), snow leopards (three), cheetahs (two), caracals (two), and domestic cats (five). Samples were extracted with 90% methanol, lipids removed with petroleum ether, and the estradiol and progestins in the methanol measured by radioimmunoassay (RIA). High Performance Liquid Chromatography (HPLC) fractionation and subsequent RIA of the fractions indicated that the estradiol-17-beta antiserum cross-reacted primarily with estradiol-17-beta in the feces of lions and tigers and was assumed to be specific for estradiol-17-beta in the feces of other species as well. However, there were several immunoreactive compounds, presumably progesterone metabolites, excreted in the feces which varied both quantitatively and qualitatively among species. The behavior of tigers, lions, cheetahs, and caracals was visually monitored during the collection period and frequency of sexual behaviors was positively correlated with increases in fecal estradiol in all species observed. The mean fecal estradiol-17-beta peaks were as follows: tigers, 128.0 +- 13.1; lions, 186.0 +- 14.8; snow leopards, 136.7 +- 15.9; cheetahs, 140.9 +- 9.0; caracals, 24.5 +- 4.0; and domestic cats 158.9 +- 19.3 ng/gm. Fecal progestin concentrations rose significantly (P lt 0,001) only after breeding or during pregnancy and were as follows: tigers, 5.6 +- 0.6; lions, 1.9 +- 0.1; cheetahs, 8.4 +- 1.1; and caracals, 2.4 +- 0.4 mu-g/gm. Fecal progestins were elevated for one-half to two-thirds of the gestation length during presumed pseudopregnancy but remained elevated throughout successful pregnancies. These results suggest that ovarian function can be monitored noninvasively in the family Felidae by the measurement of fecal estradiol-17-beta and progestin concentrations.
Keywords: Artificial-Breeding-Program; captive-management; Estradiol-17beta; Pregnancy; Progesterone; Progestin; sexual-behavior; genetics; zoo; medicine; veterinary; snow-leopard; feces; fecal-analysis; snow leopard; artificial; breeding; program; captive; management; Estradiol; 17beta; sexual; behavior; browse; snow; leopard; fecal; analysis; 1390
|
Green, M. J. B. (1987). Protected areas and snow leopards: their distribution and status. Tiger Paper, 14(4), 1–10.
Abstract: Considerable efforts have been devoted to conserving the snow leopard Panthera uncia in recent years, but progress has inevitably been slow due to the difficulties of studying a sparsely distributed, secretive and endangered species in often isolated mountainous terrain. Although knowledge about the species overall distribution in the highlands of Central Asia still remains fragmenatry, it is important to briefly examine all the available information in order to review measures taken to date to conserve the species through the protected areas network. The purpose of this paper is to examine the distribution and status of protected areas inhabited or visited by snow leopard in relation to the species' distribution and highlight deficiences in the present network.
Keywords: Central Asia; conserve; conserving; distribution; endangered species; network; Panthera-uncia; panthera uncia; protected; protected-area; protected areas; snow leopard; status; protected area; protected-areas; areas; area; snow; snow leopards; snow-leopards; snow-leopard; leopards; leopard; International; symposium; India
|
Jackson, R. M. (1992). Snow Leopard: Imperiled Phantom of Pakistan's High Mountains. Natura, 14(1), 4–9. |
Koshkarev E. (1998). Critical Ranges as Centres of Biodiversity (Vol. N 14).
Abstract: A high percentage of rare species in Central Asia experience limited conditions for distribution. Geographic centers with higher species diversity are generally constrained in terms of territory: they are formed when ranges overlap. But in Central Asia and along its borders with Russia, centers of biodiversity overlap at the very marginal edges of ranges. Central Asian species cross into Russian territory, where desert and steppe are replaced by thick forest. Here the northern borders of their ranges are sharply fragmented and isolated. Typical examples for Central Asia are the ranges of the cheetah (Acinonyx jubatus), Asian leopard (Panthera pardus caucasica), striped hyena (Hyaena hyaena), Bukhara deer (Census elaphus bactrianus), markhor (Capra falconeri), blue sheep (Pseudois nayauf) and argali (Ovis ammon). In Russia are the Altai subspecies of argali, the Siberian argali (O.a.ammon), the mountain goat (Capra sibirica), Mongolian gazelle (Procapra gutturosa), snow leopard (Uncia uncia), Pallas' cat (Felis manul), dhole (Cuon alpinus), grey marmot (Marmota baibacina), Mongolian marmot (M. sibirica) and tolai hare (Lepus tolai). Where the numbers o f individuals has fallen to extreme lows, the most effective mechanism for species survival may be supporting the integrity of ranges, in order to preserve population exchanges between neighboring groups. The geographic location of reserves and other protected territories is vitally important for the survival of Central Asian species, given the acute fragmentation of their ranges. These reserves should include significant, viable centers of population the key places. Wherever the creation of permanent protected territories is impossible, a new tactic must be found, such as introducing temporary limitations on the use of land for agriculture and hunting. But all protected territories, whether temporary or permanent, should be connected, forming a core and periphery. The marginal range areas must not be forgotten, if total protection of endangered populations is to be accomplished.
Keywords: Central Asia; biodiversity; rare species; species survival; snow leopard.; 7270; Russian
|
Saltz, D., Rowen, M., & Rubenstein, D. (2000). The effect of space-use patterns of reintroduced Asiatic wild ass on effective population size. Conservation Biology, 14(6), 1852–1861. |
Wharton, D. (1997). Endangered Species Update. Endangered Species Update, 14(11), 13.
Abstract: The snow leopard is listed as endangered, although most of its high mountain habitat remains untouched. However the ability of humans to exploit wildlife has led to it being endangered. Serious attempts to keep snow leopards in captivity began in 1891, but it was not until the 1950s that cubs survived long enough to become breeders. The American Zoo and Aquarium Association (ASA) Snow Leopard Species Survival Plan (SSP) was set up in 1984, achieving success with breeding goals.
Keywords: Species-Survival-Plan; zoo; breeders; captivity; Asa; Ssp; browse; species survival plan; species; survival; plan; 1100; endangered; endangered species; endangered-species
|
Sitwell, N. (1972). The Snow Leopard in Pakistan. Animals, 14(6), 256–259. |
Li, Y., Zhang, Y., Yadong, X., Zhang, Y., Zhang, Y., Gao, Y. Li, D. (2022). Analysis of Conservation Gaps and Landscape Connectivity for Snow Leopard in Qilian Mountains of China. 1-13, 14(1638).
Abstract: Human modification and habitat fragmentation have a substantial influence on large carnivores, which need extensive, contiguous habitats to survive in a landscape. The establishment of protected areas is an effective way to offer protection for carnivore populations by buffering them from anthropogenic impacts. In this study, we used MaxEnt to model habitat suitability and to identify conservation gaps for snow leopard (Panthera uncia) in the Qilian Mountains of China, and then assessed the impact of highways/railways and their corridors on habitat connectivity using a graph-based landscape connectivity model. Our results indicated that the study area had 51,137 km2 of potentially suitable habitat for snow leopards and that there were four protection gaps outside of Qilian Mountain National Park. The findings revealed that the investigated highway and railway resulted in a decrease in connectivity at a regional scale, and that corridor development might enhance regional connectivity, which strengthens the capacity of central habitat patches to act as stepping stones and improve connections between western and eastern habitat patches. This study emphasized the need for assessing the impact of highways and railways, as well as their role in corridor development, on species’ connectivity. Based on our results, we provide some detailed recommendations for designing protection action plans for effectively protecting snow leopard habitat and increasing habitat connectivity.
|
Ahmad, S., Rehman, E. U., Ali, H., Din, N., Haider, J., Din, J. U., Nawaz, M. A. (2022). Density Pattern of Flare-Horned Markhor (Capra falconeri) in Northern Pakistan. Sustainability, 14(9567), 1–13.
Abstract: Wild ungulates play vital roles in maintaining a balanced ecosystem through herbivory and are also an important determinant of carnivores’ density. The flare-horned markhor (Capra falconeri) is a threatened wild goat distributed across the mountain ranges of Pakistan, India, Afghanistan, Russia, Turkmenistan, Uzbekistan, and Tajikistan. The remote terrain and fragmented population limit our understanding of the population ecology of markhor, though knowledge of the target species population is vital for making informed management decisions. Therefore, the current study was designed to determine the markhor population across their range in Northern Pakistan and to evaluate the efforts made by the government and non-government organizations for the conservation of markhor. Double-observer surveys were conducted during 2019–2021 in nine major watersheds of Khyber Pakhtunkhwa and Gilgit-Baltistan covering an area of 4664 km2. Secondary data were collected for unassessed areas to gain a holistic overview of the markhor population and density in the region. Results revealed a markhor population of 7579, with a density of 0.30 animals per km2 in Northern Pakistan. Our analysis of the double-observer data through the Bayesian behavioral capture–recapture model estimated a population of 5993 individuals (95% CI) of markhor across
nine study sites, with a density of 1.28 animals per km . A review of secondary data revealed that a population of about 1586 was present in the un-surveyed area (20,033.33 km2), with a density of 0.08 per km . A total of 146 groups of markhor were counted, with a mean group size of 23 (3–58) individuals. There were 109 males and 108 young per 100 females in the population. Among 1936 recorded males, Class I males accounted for 27.74%, followed by Class II (26.45%), Class IV (trophy-size) (23.40%), and Class III (22.42%). The overall detection probability was recorded as 0.87 and 0.68 for the first observer and second observer, respectively. Compared with the past reports, the population of markhor in Northern Pakistan appears to be increasing, particularly in protected areas (PAs) such as national parks and community-controlled hunting areas (CCHAs). Conservation programs, notably trophy hunting and PA networks, appear to be vital in sustaining markhor populations in parts of the species range. We recommend expansion in such programs in the markhor range in order to maintain a viable population of this majestic wild goat in the region. Keywords: markhor; Capra falconeri; Gilgit-Baltistan; Karakoram; population; double-observer; CGNP
|
Vipin, G., T. R., Sharma, V., Kumar, B. K., Gaur, A. (2022). Kleptoparasitic interaction between Snow Leopard Panthera uncia and Red Fox Vulpes vulpes suggested by circumstantial evidence in Pin Valley National Park, India. Journal of Threatened Taxa, 14(10), 21928–21935.
Abstract: In the present study, we describe an interspecific kleptoparasitic interaction between two sympatric mammalian carnivores in the high altitudinal Trans-Himalaya region of Himachal Pradesh, India. The study was based on the inferences drawn from the circumstantial evidence (direct and indirect) noticed in the study area in Pin Valley National Park. The inferences from the analysis of the evidence suggested the interaction between a Snow Leopard Panthera uncia, a Red Fox Vulpes vulpes, and a donkey. The arrangement of evidence in a sequential manner suggested that a donkey was killed by a Snow Leopard and a Red Fox stole the food from the carrion of the Snow Leopard’s prey. The Red Fox was killed by the Snow Leopard, which was caught while stealing. The present study represents an example of kleptoparasitic interaction between the Snow Leopard and the Red Fox. This study also proves that such interactions may cost the life of a kleptoparasite and supports the retaliation behaviour of Snow Leopards.
|