|
Alibekov L.A. (1978). Fauna.
Abstract: Represented is fauna of big salt-marsh valleys and pre-Kyzylkum area, a tier of low desert foothill valleys, tiers of lowland ridges, deeply cut hillside midlands, and cold highlands of the watershed ridge-top tier in the Jizak region of Uzbekistan. The highest tier of the Jizak region, a habitat of snow leopard, Menzbier's marmot, Siberian ibex, sometimes wild Tajik sheep coming from the East, bear ascending from lower elevations, and wolf in summer, has the most adverse living conditions. Central Asia argali and stone marten inhabit in central part of the North Nurata ridge.
|
|
|
Ale, S., & Whelan, C. (2008). Reappraisal of the role of big, fierce predators.
Abstract: The suggestion in the early 20th century that top predators were a necessary component of ecosystems because they hold herbivore populations in check and promote biodiversity was at Wrst accepted and then largely rejected. With the advent of Evolutionary Ecology and a more full appreciation of direct and indirect effects of top predators, this role of top predators is again gaining acceptance. The previous views were predicated upon lethal effects of predators but largely overlooked their non-lethal effects. We suggest that
conceptual advances coupled with an increased use of experiments have convincingly demonstrated that prey experience costs that transcend the obvious cost of death. Prey species use adaptive behaviours to avoid predators, and these behaviours are not cost-free. With predation risk, prey species greatly restrict their use of available habitats and consumption of available food resources. Effects of top predators consequently cascade down to the trophic levels below them. Top predators, the biggies, are thus both the targets of and the means for conservation at the landscape scale.
|
|
|
Anonymous. (1999). Protection Funded for Himalayan Snow Leopards, Bears.
|
|
|
Anonymous. (2000). A snow leopard conservation plan for Mongolia.
Abstract: The snow leopard faces multiple threats in the Himalayan region, from habitat degradation, loss of prey, the trade in pelts, parts and live animals, and conflict with humans, primarily pastoralists. Consequently, the populations are considered to be in decline and the species is listed as Endangered in the IUCN's Red List. As a 'flagship' and 'umbrella' species the snow leopard can be a unifying biological feature to raise awareness of its plight and the need for conservation, which will benefit other facets of Himalayan biodiversity as well. Some studies of snow leopards have been conducted in the Himalayan region. But, because of its elusive nature and preference for remote and inaccessible habitat, knowledge of the ecology and behaviour of this mystical montane predator is scant. The available information, however, suggests that snow leopards occur at low densities and large areas of habitat are required to conserve a viable population. Thus, many researchers and conservationists have advocated landscape-scale approaches to conservation within a regional context, rather than focusing on individual protected areas.This regional strategy for WWF's snow leopard conservation program is built on such an approach. The following were identified as important regional issues: 1) international trade in snow leopards and parts; 2) the human-snow leopard conflict; 3) the need for a landscape approach to conservation to provide large spatial areas that can support demographically and ecologically viable snow leopard metapopulations; 4) research on snow leopard ecology to develop long-term, science-based conservation management plans; and 5) regional coordination and dialog. While the issues are regional, the WWF's in the region have developed 5-year strategic actions and activities, using the regional strategies as a touchstone, which will be implemented at national levels. The WWF's will develop proposals based on these strategic actions, with estimated budgets, for use by the network for funding and fund-raising. WWF also recognizes the need to collaborate and coordinate within the network and with other organizations in the region to achieve conservation goals in an efficient manner, and will form a working group to coordinate activities and monitor progress.
|
|
|
Aizin B.M. (1985). Snow leopard.
Abstract: Snow leopard is a rare and endangered species, distributed in all mountain ridges of Kyrgyzstan. Its population is 1,400 animals, density being 0.2 0.5 animal per 1,000 ha. Its population was noticed to decrease in some ridges because of decreasing populations of mountain ungulates. 200 snow leopards were caught for the purpose of zoo-export over the last 20 years. This species is protected in the nature reserves Sary Chelek, Besh Aral, and natural park Ala Archa.
|
|
|
Abdunazarov B.B. (2002). Biodiversity of mammals in the Western Tien Shan and its conservation.
Abstract: The mammal fauna of Uzbekistan's mountain ecosystems is represented by some 60 species. Data on mammal species composition in the Western Tien Shan (48 species) and Pamir-Alai (57 species) is given. A quantity of species endemic to the mountainous ecosystems of Uzbekistan is defined. Quantities of nine rare species inhabiting the mountain ecosystems, including snow leopard, are given. Number of snow leopard in Pamir-Alai and the Western Tien Shan is estimated to be 30-50 animals.
|
|
|
Ferguson, D. A. (1997). International Cooperation for Snow Leopard and Biodiversity Conservation: The Government Perspective. In R.Jackson, & A.Ahmad (Eds.), (pp. 178–193). Lahore, Pakistan: Islt.
|
|
|
Aristov A.A. (2001). Genus Irbises Uncia Gray, 1854. Irbis or snow leopard Uncia uncia (Schreber, 1775).
Abstract: An identification table for genus and species of mammals of Russia and adjacent areas is given. The taxonomy, morphology, distribution and life history of carnivores are described. The features of genus Uncia and species Uncia uncia, geographical variability, distribution, biology and value are described in detail.
|
|
|
Aryal, A. (2009). Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal.
Abstract: A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has
supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively.
|
|
|
Bannikov A.G. (1982). We must save them.
Abstract: It describes the USSR's fauna species included in the Red Data Book and gives an assessment of endangered species conservation practices throughout the world. It says about ways and perspectives of conservation and rehabilitation of rare animals in the USSR. It provides brief information concerning snow leopard's biology, distribution, number, opportunities for captive breeding, and international conservation activities aimed to protect this species.
|
|
|
(1998). Biological diversity conservation. National strategy and action plan of the Republic of Uzbekistan.
Abstract: The National strategy and action plan of the Republic of Uzbekistan was signed on April 1, 1998. Snow leopard was included in the list of rare and endangered animal species and referred to category 2 a rare, not endangered species. It is distributed in highlands of the West Tien Shan and Pamiro-Alay. Its population is 30-50 animals. Snow leopard is protected in the Chatkal, Gissar nature reserve, and Ugam-Chatkal national park.
|
|
|
Farrington, J. (2005). A Report on Protected Areas, Biodiversity, and Conservation in the Kyrgyzstan Tian Shan with Brief Notes on the Kyrgyzstan Pamir-Alai and the Tian Shan Mountains of Kazakhstan, Uzbekistan, and China. Ph.D. thesis, , Kyrgyzstan.
Abstract: Kyrgyzstan is a land of towering mountains, glaciers, rushing streams, wildflowercovered meadows, forests, snow leopards, soaring eagles, and yurt-dwelling nomads. The entire nation lies astride the Tian Shan1, Chinese for “Heavenly Mountains”, one of the world's highest mountain ranges, which is 7439 m (24,400 ft) in elevation at its highest point. The nation is the second smallest of the former Soviet Central Asian republics. In
spite of Kyrgyzstan's diverse wildlife and stunning natural beauty, the nation remains little known, and, as yet, still on the frontier of international conservation efforts. The following report is the product of 12 months of research into the state of conservation and land-use in Kyrgyzstan. This effort was funded by the Fulbright Commission of the U.S. State Department, and represents the most recent findings of the author's personal environmental journey through Inner Asia, which began in 1999. When I first started my preliminary research for this project, I was extremely surprised to learn that, even though the Tian Shan Range has tremendous ecological significance for conservation efforts in middle Asia, there wasn't a single major international conservation organization with an office in the former Soviet Central Asian republics. Even more surprising was how little awareness there is of conservation issues in the Tian Shan region amongst conservation workers in neighboring areas who are attempting to preserve similar species assemblages and ecosystems to those found in the Tian Shan. Given this lack of awareness, and the great potential for the international community to make a positive contribution towards improving the current state of biodiversity conservation in Kyrgyzstan and Central Asia, I have summarized my findings on protected areas and conservation in Kyrgyzstan and the Tian Shan of Kazakhstan, Uzbekistan, and Xinjiang in the chapters below. The report begins with some brief background information on geography and society in the Kyrgyz Republic, followed by an overview of biodiversity and the state of conservation in the nation, which at the present time closely parallels the state of conservation in the other former Soviet Central Asian republics. Part IV of the report provides a catalog of all major protected areas in Kyrgyzstan and the other Tian Shan nations, followed by a list of sites in Kyrgyzstan that are as yet unprotected but merit protection. In the appendices the reader will find fairly comprehensive species lists of flora and fauna found in the Kyrgyz Republic, including lists of mammals, birds, fish, reptiles, amphibians, trees and shrubs, wildflowers, and endemic plants. In addition, a
draft paper on the history and current practice of pastoral nomadism in Kyrgyzstan has been included in Appendix A. While the research emphasis for this study was on eastern Kyrgyzstan, over the course of the study the author did have the opportunity to make brief journeys to southern Kyrgyzstan, Uzbekistan, Kazakhstan, and Xinjiang. While falling short of being a definitive survey of protected areas of the Tian Shan, the informational review which
follows is the first attempt at bringing the details of conservation efforts throughout the entire Tian Shan Range together in one place. It is hoped that this summary of biodiversity and conservation in the Tian Shan will generate interest in the region amongst conservationists, and help increase efforts to protect this surprisingly unknown range that forms an island of meadows, rivers, lakes, and forests in the arid heart of Asia.
|
|
|
Dhungel, S. (1994). Conservation of the Snow Leopard in Nepal. In J. L. Fox, & D. Jezing (Eds.), (pp. 47–50). Usa: Islt.
|
|
|
De-hao, L. (1989). Economic Fauna of Qinghai. Xining: Qinghai People's Publishing House.
|
|
|
Bhatnagar, Y. V., Mathur, V. B., & McCarthy, T. (2002). A Regional Perspective for Snow Leopard Conservation In the Indian Trans-Himalaya.. Islt: Islt.
Abstract: The Trans-Himalaya is a vast biogeographic region in the cold and arid rain-shadow of
the Greater Himalaya and is spread over three Indian states. From the conservation
standpoint this region has several unique characteristics. Unlike most other
biogeographic regions of the country, it has wildlife, including large mammals, spread
over the entire region. Another feature is that the harsh climate and topography
provides limited agricultural land and pastures, all of which are currently utilized by
people. The harsh environment has given rise to a specialized assemblage of flora and fauna in
the region that include the endangered snow leopard, a variety of wild sheep and goat,
Tibetan antelope, Tibetan gazelle, kiang and wild yak. The snow leopard is one of the
most charismatic species of the Trans-Himalaya. This apex predator, with a wide
distribution, has ecological importance and international appeal, and is eminently
suitable to be used as both a 'flagship' and an 'umbrella species' to anchor and guide
conservation efforts in the Trans-Himalayan region. Among the 10 Biogeographic Zones in the country, the Trans-Himalaya has a
comparatively large Protected Area (PA) coverage, with over 15,000 km2 (8.2 %) of
the geographical area under the network. In spite of this, the bulk of the large mammal
populations still exist outside the PAs, which include highly endangered species such
as snow leopard, chiru, wild yak, Ladakh urial, kiang and brown bear. Given the sparse resource availability in the Trans-Himalaya and the existing human
use patterns, there are few alternatives that can be provided to resource dependent
human communities in and around PAs. The existing PAs themselves pose formidable
conservation challenges and a further increase in their extent is impractical. The
problem is further compounded by the fact that some of the large PAs have unclear
boundaries and include vast stretches that do not have any direct wildlife values. These
issues call for an alternative strategy for conservation of the Trans-Himalayan tracts
based on a regional perspective, which includes reconciling conservation with
development. In this paper we stress that conservation issues of this region, such as competition for
forage between wild and domestic herbivores and human-wildlife conflicts need to be
addressed in a participatory manner. We suggest an alternative scheme to look at the
zonation of existing PAs and also the Trans-Himalayan region as a whole, to facilitate
better conservation in the region. Also, we emphasize that there is a vital need for
additional resources and a formal setup for regional planning and management under a
centrally sponsored scheme such as the 'Project Snow Leopard'.
|
|
|
Chapron, G., & Legendre, S. (2002). Some Insights Into Snow Leopard (Uncia Uncia) Demography By Using Stage Structured Population Models.. Seattle: Islt.
Abstract: Based on the limited data available on snow leopard demography, we developed deterministic and stochastic stage-structured demographic models to study the population dynamics of this large cat. Our results reveal that even small leopard populations can persist provided their demographic parameters remain high, but less favorable scenarios would require larger population sizes. Population growth rate is more sensitive to breeder survivals than to any other parameters. A snow leopard population would start declining if yearly mortality claims more than 1/5 of the population. This study identifies poaching as a major threat to snow leopard survival and stresses the importance of long-term studies to better understand snow leopard population dynamics.
|
|
|
Bowling, B. (2004). The Legal Status of Snow Leopards in Afghanistan. United Nations Environment Programme.
|
|
|
Blomqvist, L., & Sten, I. (1982). Reproductive biology of the snow leopard, Panthera uncia. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards (pp. 71–79). Helsinki: Helsinki Zoo.
|
|
|
Kreuzberg-Mukhina, E., Esipov A.V., Bykova, E. A., Vashetko, E. V., & Aromov, B. (2003). Development of the national Action Plan for the conservation of Snow Leopard in Uzbekistan. Report: 1-51 (Vol. 1-51). Uzbekistan.
Abstract: This document is the final report on the ISLT Project “Development of national Action plan for the conservation of Snow Leopard in Uzbekistan” and a Conservation Strategy for the Snow leopard in Uzbekistan. It includes biology and current status, limiting factors, existing and necessary conservation measures.
|
|
|
Vashetko E.V. (1996). On the fauna of terrestrial vertebrates inhabiting Hissar Nature Reserve (Vol. Issue 1.).
Abstract: The data on the species composition, numbers and distribution of the terrestrial vertebrates over territory Hissar nature reserve are discussed. About 60 species of amphibians, reptiles and mammals have been recorded in the reserve as a result of our own researches and the analyses of communication. There were recorded 5-7 individuals of snow leopard in Kyzylsu site of nature reserve and 15 individuals in Miraki site of nature reserve in 1979-1981.
|
|
|
Grachev Yu.A. (1991). Snow leopard Uncia uncia Sch. 1775 (Vol. Vol. 1. Animals.).
Abstract: Snow leopard is a rare species with shrinking habitat and decreasing population (category III). It is distributed in Tien Shan (the ridges of Karjantau, Ugam, Talas, Kyrgyz, Zailiyskiy, Kunghey, Terskey, Ketmen), Djungar Alatau, Tarbagatai, Saur, and South Altai. This species has disappeared in the Syrdarya Karatau and the mountains of North Tien Shan. Its total number in Kazakhstan is estimated to be 180-200 animals. The threats are reduction of mountain ungulates and poaching. Snow leopard is protected in the Aksu-Djabagly, Alma-Ata, and Markakol nature reserves and the Alma-Ata, Lepsin, and Tokhta sanctuaries. The Djungar nature reserve needs to be established.
|
|
|
Gromov I.M. (1963). Felis (Uncia) uncia Schreber (1776) leopard or irbis (Vol. Part.2.).
Abstract: An identification table for genus and species of mammals of USSR is given. The taxonomy, morphology, distribution and life history are described. The features of snow leopard Felis (Uncia) uncia, distribution, biology and practical value are described.
|
|
|
Smith, A. T., & Foggin, M. J. (1998). The Plateau Pika (Ochotona curzoniae) is a Keystone Species for Biodiversity on the Tibetan Plateau. Animal Conservation, 2, 235–240.
Abstract: It is necessary to look at the big picture when managing biological resources on the QinghaiXizang (Tibetan) plateau. Plateau pikas (Ochotona curzoniae) are poisoned widely across the plateau. Putative reasons for these control measures are that pika populations may reach high densities and correspondingly reduce forage for domestic livestock (yak, sheep, horses), and because they may be responsible for habitat degradation. In contrast, we highlight the important role the plateau pika plays as a keystone species in the Tibetan plateau ecosystem. The plateau pika is a keystone species because it: (i) makes burrows that are the primary homes to a wide variety of small birds and lizards; (ii) creates microhabitat disturbance that results in an increase in plant species richness; (iii) serves as the principal prey for nearly all of the plateau's predator species; (iv) contributes positively to ecosystem-level dynamics. The plateau pika should be managed in concert with other uses of the land to ensure preservation of China's native biodiversity, as well as long-term sustainable use of the pastureland by domestic livestock.
|
|
|
Sludsky A.A. (1982). Genus Snow leopard Uncia Gray, 1854. Snow leopard Uncia uncia Schreber, 1775 (Vol. Vol. III, Part 2.).
Abstract: Snow leopard is rare and extinctive species that have scientific and aesthetic significance. The features of genus Uncia and species Uncia uncia are described. Also distribution, habitat, way of life, reproduction biology, behavioural patterns, migration routes, infections and parasites, enemies and competitors, number and number fluctuation, practical value of snow leopard in the Kazakhstan are given.
|
|
|
Kashkarov D.N. (1923). Living conditions and living in various parts of the mountainous Turkestan. Central Asian snow leopard, irbis (Vol. Issue 2. The animals of mountainous Turkistan.).
Abstract: It describes fauna of the mountainous Turkestan. Irbis is met in Tien Shan, Pamir, Bukhara and Kopet-Dag. Apart from Turkistan, it lives in the Altai, Tibet and on northern slopes of the Himalayas. In Kopet-Dag, this species is met with another panther Caucasian leopard. It preys on ibex, wild sheep, roe deer, keklik (partridge), snow-cock and porcupine. It also attacks small livestock. Normally this species would never attack the man though hunters mentioned some cases that evidence otherwise.
|
|