Jackson, R., & Wangchuk, R. (2004). A Community-Based Approach to Mitigating Livestock Depredation by Snow Leopards (Vol. 9).
Abstract: Livestock depredation by the endangered snow leopard (Panthera uncia) _is an increasingly contentious issue in Himalayan villages, especially in or near protected areas. Mass attacks in which as many as 100 sheep and goats are killed in a single incident inevitably result in retaliation by local villagers. This article describes a community-based conservation initiative to address this problem in Hemis National Park, India. Human-wildlife conflict is alleviated by predator-proofing villagers' nighttime livestock pens and by enhancing household incomes in environmentally sensitive and culturally compatible ways. The authors have found that the highly participatory strategy described here (Appreciative Participatory Planning and Action-APPA) leads to a sense of project ownership by local stakeholders, communal empowerment, self-reliance, and willingness to co-exist with
snow leopards. The most significant conservation outcome of this process is the protection from retaliatory poaching of up to five snow leopards for every village's livestock pens that are made predator-proof._
|
Encke, B. (1966). The breeding of snow leopards (Uncia uncia) in the Krefeld Zoo. Freunde des Kolner Zoo, 9(Winter 1966/1967), 145–146.
|
Encke, B. (1967). Die sucht von schneeleoparden (Uncia uncia) im Krefelder Tierpark (Vol. 9).
|
Lyngdoh, S., Shrotriya, S., Goyal, S. P., Clements, H., Hayward, M. W., Habib, B. (2014). Prey Preferences of the Snow Leopard (Panthera uncia): Regional Diet Specificity Holds Global Significance for Conservation. Plos One, 9(2), 1–11.
Abstract: The endangered snow leopard is a large felid that is distributed over 1.83 million km2 globally. Throughout its range it relies on a limited number of prey species in some of the most inhospitable landscapes on the planet where high rates of human persecution exist for both predator and prey. We reviewed 14 published and 11 unpublished studies pertaining to snow leopard diet throughout its range. We calculated prey consumption in terms of frequency of occurrence and biomass consumed based on 1696 analysed scats from throughout the snow leopard’s range. Prey biomass consumed was calculated based on the Ackerman’s linear correction factor. We identified four distinct physiographic and snow leopard prey type zones, using cluster analysis that had unique prey assemblages and had key prey characteristics which supported snow leopard occurrence there. Levin’s index showed the snow leopard had a specialized dietary niche breadth. The main prey of the snow leopard were Siberian ibex (Capra sibrica), blue sheep (Pseudois nayaur), Himalayan tahr (Hemitragus jemlahicus), argali (Ovis ammon) and marmots (Marmota spp). The significantly preferred prey species of snow leopard weighed 5565 kg, while the preferred prey weight range of snow leopard was 36–76 kg with a significant preference for Siberian ibex and blue sheep. Our meta-analysis identified critical dietary resources for snow leopards throughout their distribution and illustrates the importance of understanding regional variation in species ecology; particularly prey species
that have global implications for conservation.
|
Esson, C., Skerratt, L. F., Berger, L., Malmsten, J., Strand, T., Lundkvist, A., Järhult, J. D., Michaux, J., Mijiddorj, T. N.,, Bayrakçısmith, R., Mishra, C., Johansson, O. (2019). Health and zoonotic Infections of snow leopards Panthera unica in the South Gobi desert of Mongolia. Infection Ecology & Epidemiology, 9(1604063), 1–11.
Abstract: Background: Snow leopards, Panthera uncia, are a threatened apex predator, scattered across the mountains of Central and South Asia. Disease threats to wild snow leopards have not been investigated.
Methods and Results: Between 2008 and 2015, twenty snow leopards in the South Gobi desert of Mongolia were captured and immobilised for health screening and radio-collaring. Blood samples and external parasites were collected for pathogen analyses using enzyme- linked immunosorbent assay (ELISA), microscopic agglutination test (MAT), and next- generation sequencing (NGS) techniques. The animals showed no clinical signs of disease, however, serum antibodies to significant zoonotic pathogens were detected. These patho- gens included, Coxiella burnetii, (25% prevalence), Leptospira spp., (20%), and Toxoplasma gondii (20%). Ticks collected from snow leopards contained potentially zoonotic bacteria from the genera Bacillus, Bacteroides, Campylobacter, Coxiella, Rickettsia, Staphylococcus and Streptococcus.
Conclusions: The zoonotic pathogens identified in this study, in the short-term did not appear to cause illness in the snow leopards, but have caused illness in other wild felids. Therefore, surveillance for pathogens should be implemented to monitor for potential longer- term disease impacts on this snow leopard population.
|
Karki, A., Panthi, S. (2021). Factors affecting livestock depredation by snow leopards (Panthera uncia) in the Himalayan region of Nepal. PeerJ, 9(e11575), 1–14.
Abstract: The snow leopard (Panthera uncia) found in central Asia is classified as vulnerable species by the International Union for Conservation of Nature (IUCN). Every year, large number of livestock are killed by snow leopards in Nepal, leading to economic loss to local communities and making human-snow leopard conflict a major threat to snow leopard conservation. We conducted formal and informal stakeholder’s interviews to gather information related to livestock depredation with the aim to map the attack sites by the snow leopard. These sites were further validated by district forest office staffs to assess sources of bias. Attack sites older than 3 years were removed from the survey. We found 109 attack sites and visited all the sites for geo location purpose (GPS points of all unique sites were taken). We maintained at least a 100 m distance between attack locations to ensure that each attack location was unique, which resulted in 86 unique locations. A total of 235 km2 was used to define livestock depredation risk zone during this study. Using Maximum Entropy (MaxEnt) modeling, we found that distance to livestock sheds, distance to paths, aspect, and distance to roads were major contributing factors to the snow leopard’s attacks. We identified 13.64 km2 as risk zone for livestock depredation from snow leopards in the study area. Furthermore, snow leopards preferred to attack livestock near livestock shelters, far from human paths and at moderate distance from motor roads. These identified attack zones should be managed both for snow leopard conservation and livestock protection in order to balance human livelihoods while protecting snow leopards and their habitats.
|
Blomqvist, L. (2003). Captive status of the snow leopard in Europe 2001 (Vol. 8).
|
Blomqvist, L. (2003). The global snow leopard population in captivity 2001 (Vol. 8).
|
Dexel, B. (2003). The illegal trade in snow leopards – a global perspective (Vol. 8).
|
Esipov V.M. (1978). The nature reserve in the spurs of Tien Shan (Vol. Vol.8.).
Abstract: The Chatkal state mountain forest nature reserve is located in western spurs of the Chatkal ridge. The permanent inhabitants of the nature reserve are ibex, wild boar, roe-deer, bear, badger, porcupine, stone marten, fox, ermine, Menzbier's marmot, and relict suslik (gopher), and bird species such as gray partridge, snow-cock, black vulture, griffon vulture, etc. Under special protection are rare animal and bird species such as snow leopard, Menzbier's marmot, bearded vulture, golden eagle, etc.
|