toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Johansson, O., Ullman, K., Lkhagvajav, P., Wiseman, M., Malmsten, J., Leijon, M. url 
  Title Detection and Genetic Characterization of Viruses Present in Free-Ranging Snow Leopards Using Next-Generation Sequencing Type Journal Article
  Year 2020 Publication Frontiers in Veterinary Science Abbreviated Journal  
  Volume (down) 7 Issue 645 Pages 1-9  
  Keywords snow leopard, free-ranging, virome, Mongolia, rectal swabs, next-generating sequencing, Panthera unica  
  Abstract Snow leopards inhabit the cold, arid environments of the high

mountains of South and Central Asia. These living conditions likely

affect the abundance and composition of microbes with the capacity to

infect these animals. It is important to investigate the microbes that

snow leopards are exposed to detect infectious disease threats and

define a baseline for future changes that may impact the health of this

endangered felid. In this work, next-generation sequencing is used to

investigate the fecal (and in a few cases serum) virome of seven snow

leopards from the Tost Mountains of Mongolia. The viral species to which

the greatest number of sequences reads showed high similarity was

rotavirus. Excluding one animal with overall very few sequence reads,

four of six animals (67%) displayed evidence of rotavirus infection. A

serum sample of a male and a rectal swab of a female snow leopard

produced sequence reads identical or closely similar to felid

herpesvirus 1, providing the first evidence that this virus infects snow

leopards. In addition, the rectal swab from the same female also

displayed sequence reads most similar to feline papillomavirus 2, which

is the first evidence for this virus infecting snow leopards. The rectal

swabs from all animals also showed evidence for the presence of small

circular DNA viruses, predominantly Circular Rep-Encoding

Single-Stranded (CRESS) DNA viruses and in one case feline anellovirus.

Several of the viruses implicated in the present study could affect the

health of snow leopards. In animals which are under environmental

stress, for example, young dispersing individuals and lactating females,

health issues may be exacerbated by latent virus infections.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1612  
Permanent link to this record
 

 
Author Sharma, K., Fiechter, M., George, T., Young, J., Alexander, J. S., Bijoor, Suryawanshi, K., Mishra, C. url 
  Title Conservation and people: Towards an ethical code of conduct for the use of camera traps in wildlife research Type Journal Article
  Year 2020 Publication Ecological Solutions and Evidence Abbreviated Journal  
  Volume (down) Issue Pages 1-6  
  Keywords camera trap, code of conduct, ethics, human rights, law, PARTNERS principles for community- based conservation, privacy, snow leopard  
  Abstract 1. Camera trapping is a widely employed tool in wildlife

research, used to estimate animal abundances, understand animal

movement, assess species richness and under- stand animal behaviour. In

addition to images of wild animals, research cameras often record human

images, inadvertently capturing behaviours ranging from innocuous

actions to potentially serious crimes.

2. With the increasing use of camera traps, there is an urgent need to

reflect on how researchers should deal with human images caught on

cameras. On the one hand, it is important to respect the privacy of

individuals caught on cameras, while, on the other hand, there is a

larger public duty to report illegal activity. This creates ethical

dilemmas for researchers.

3. Here, based on our camera-trap research on snow leopards Panthera

uncia, we outline a general code of conduct to help improve the practice

of camera trap based research and help researchers better navigate the

ethical-legal tightrope of this important research tool.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1626  
Permanent link to this record
 

 
Author Poyarkov, A. D., Munkhtsog, B., Korablev, M. P., Kuksin, A. N., Alexandrov, D. Y., Chistopolova, M. D.,Hernandez-Blanco, J. A., Munkhtogtokh, O., Karnaukhov, A. S., Lkhamsuren, N., Bayaraa, M., Jackson, R. M., Maheshwari, A., Rozhnov, V. V. url 
  Title Assurance of the existence of a trans-boundary population of the snow leopard (Panthera uncia) at Tsagaanshuvuut – Tsagan- Shibetu SPA at the Mongolia-Russia border Type Journal Article
  Year 2020 Publication Integrative Zoology Abbreviated Journal  
  Volume (down) Issue 15 Pages 224-231  
  Keywords FST, home range, Panthera uncia, snow leopard, trans-boundary population  
  Abstract The existence of a trans-boundary population of the snow leopard (Panthera uncia) that inhabits the massifs of Tsagaanshuvuut (Mongolia) – Tsagan-Shibetu (Russia) was determined through non-invasive genetic analysis of scat samples and by studying the structure of territory use by a collared female individual. The genetic analysis included species identification of samples through sequencing of a fragment of the cytochrome b gene and individual identification using a panel of 8 microsatellites. The home range of a female snow leopard marked with a satellite Global Positioning System (GPS) collar was represented by the minimum convex polygon method (MCP) 100, the MCP 95 method and the fixed kernel 95 method. The results revealed insignificant genetic differentiation between snow leopards that inhabit both massifs (minimal fixation index [FST]), and the data testify to the unity of the cross-border group. Moreover, 5 common individuals were identified from Mongolian and Russian territories. This finding clearly shows that their home range includes territories of both countries. In addition, regular movement of a collared snow leopard in Mongolia and Russia confirmed the existence of a cross-border snow leopard group. These data support that trans-boundary conservation is important for snow leopards in both countries. We conclude that it is crucial for Russia to study the northern range of snow leopards in Asia.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1493  
Permanent link to this record
 

 
Author Chetri, M., Odden, M., Devineau, O., McCarthy, T., Wegge, P. url 
  Title Multiple factors influence local perceptions of snow leopards and Himalayan wolves in the central Himalayas, Nepal. Type Journal Article
  Year 2020 Publication PeerJ Abbreviated Journal  
  Volume (down) Issue Pages 1-18  
  Keywords Panthera uncia, Canis lupus chanco, Perceptions, Large carnivores, Trans-Himalayas  
  Abstract An understanding of local perceptions of carnivores is

important for conservation and management planning. In the central

Himalayas, Nepal, we interviewed 428 individuals from 85 settlements

using a semi-structured questionnaire to quantitatively assess local

perceptions and tolerance of snow leopards and wolves. We used

generalized linear mixed effect models to assess influential factors,

and found that tolerance of snow leopards was much higher than of

wolves. Interestingly, having experienced livestock losses had a minor

impact on perceptions of the carnivores. Occupation of the respondents

had a strong effect on perceptions of snow leopards but not of wolves.

Literacy and age had weak impacts on snow leopard perceptions, but the

interaction among these terms showed a marked effect, that is, being

illiterate had a more marked negative impact among older respondents.

Among the various factors affecting perceptions of wolves, numbers of

livestock owned and gender were the most important predictors. People

with larger livestock herds were more negative towards wolves. In terms

of gender, males were more positive to wolves than females, but no such

pattern was observed for snow leopards. People’s negative perceptions

towards wolves were also related to the remoteness of the villages.

Factors affecting people’s perceptions could not be generalized for the

two species, and thus need to be addressed separately. We suggest future

conservation projects and programs should prioritize remote settlements.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1615  
Permanent link to this record
 

 
Author Atzeni, L., Cushman, S. A., Bai, D., Wang, J., Chen, P., Shi, K., Riordan, P. url 
  Title Meta-replication, sampling bias, and multi-scale model selection: A case study on snow leopard (Panthera uncia) in western China. Type Journal Article
  Year 2020 Publication Ecology and Evolution Abbreviated Journal  
  Volume (down) Issue Pages 1-27  
  Keywords MaxEnt, meta-replication, multi-scale, Panthera uncia, sampling bias, scale selection, snow leopard, species distribution model  
  Abstract Replicated multiple scale species distribution models (SDMs)

have become increasingly important to identify the correct variables

determining species distribution and their influences on ecological

responses. This study explores multi-scale habitat relationships of the

snow leopard (Panthera uncia) in two study areas on the Qinghai–Tibetan

Plateau of western China. Our primary objectives were to evaluate the

degree to which snow leopard habitat relationships, expressed by

predictors, scales of response, and magnitude of effects, were

consistent across study areas or locally landcape-specific. We coupled

univariate scale optimization and the maximum entropy algorithm to

produce multivariate SDMs, inferring the relative suitability for the

species by ensembling top performing models. We optimized the SDMs based

on average omission rate across the top models and ensembles’ overlap

with a simulated reference model. Comparison of SDMs in the two study

areas highlighted landscape-specific responses to limiting factors.

These were dependent on the effects of the hydrological network,

anthropogenic features, topographic complexity, and the heterogeneity of

the landcover patch mosaic. Overall, even accounting for specific local

differences, we found general landscape attributes associated with snow

leopard ecological requirements, consisting of a positive association

with uplands and ridges, aggregated low-contrast landscapes, and large

extents of grassy and herbaceous vegetation. As a means to evaluate the

performance of two bias correction methods, we explored their effects on

three datasets showing a range of bias intensities. The performance of

corrections depends on the bias intensity; however, density kernels

offered a reliable correction strategy under all circumstances. This

study reveals the multi-scale response of snow leopards to environmental

attributes and confirms the role of meta-replicated study designs for

the identification of spatially varying limiting factors. Furthermore,

this study makes important contributions to the ongoing discussion about

the best approaches for sampling bias correction.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1616  
Permanent link to this record
 

 
Author Hameed, S., Din, J. U., Ali, H., Kabir, M., Younas, M., Rehman, E. U., Bari, F., Hao, W., Bischof, R., Nawaz, M. A. url 
  Title Identifying priority landscapes for conservation of snow leopards in Pakistan Type Journal Article
  Year 2020 Publication Plos One Abbreviated Journal  
  Volume (down) Issue Pages 1-20  
  Keywords  
  Abstract Pakistan’s total estimated snow leopard habitat is about

80,000 km2 of which about half is considered prime habitat. However,

this preliminary demarcation was not always in close agreement with the

actual distribution the discrepancy may be huge at the local and

regional level. Recent technological developments like camera trapping

and molecular genetics allow for collecting reliable presence records

that could be used to construct realistic species distribution based on

empirical data and advanced mathematical approaches like MaxEnt. The

current study followed this approach to construct an accurate

distribution of the species in Pakistan. Moreover, movement corridors,

among different landscapes, were also identified through circuit theory.

The probability of habitat suitability, generated from 98 presence

points and 11 environmental variables, scored the snow leopard’s assumed

range in Pakistan, from 0 to 0.97. A large portion of the known range

represented low-quality habitat, including areas in lower Chitral, Swat,

Astore, and Kashmir. Conversely, Khunjerab, Misgar, Chapursan, Qurumber,

Broghil, and Central Karakoram represented high-quality habitats.

Variables with higher contributions in the MaxEnt model were

precipitation during the driest month (34%), annual mean temperature

(19.5%), mean diurnal range of temperature (9.8%), annual precipitation

(9.4%), and river density (9.2). The model was validated through

receiver operating characteristic (ROC) plots and defined thresholds.

The average test AUC in Maxent for the replicate runs was 0.933 while

the value of AUC by ROC curve calculated at 0.15 threshold was 1.00.

These validation tests suggested a good model fit and strong predictive

power. The connectivity analysis revealed that the population in the

Hindukush landscape appears to be more connected with the population in

Afghani- stan as compared to other populations in Pakistan. Similarly,

the Pamir-Karakoram population is better connected with China and

Tajikistan, while the Himalayan population was connected with the

population in India. Based on our findings we propose three model

landscapes to be considered under the Global Snow Leopard Ecosystem

Protection Program (GSLEP) agenda as regional priority areas, to

safeguard the future of the snow leopard in Pakistan and the region.

These landscapes fall within mountain ranges of the Himalaya, Hindu Kush

and Karakoram-Pamir, respectively. We also identified gaps in the

existing protected areas network and suggest new protected areas in

Chitral and Gilgit-Baltistan to protect critical habitats of snow

leopard in Pakistan.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1617  
Permanent link to this record
 

 
Author Durbach, I., Borchers, D., Sutherland, C., Sharma, K. url 
  Title Fast, flexible alternatives to regular grid designs for spatial capture–recapture. Type Research Article
  Year 2020 Publication Methods in Ecology and Evolution Abbreviated Journal  
  Volume (down) Issue Pages 1-13  
  Keywords camera trap, population ecology,sampling, spatial capture-recapture, surveys  
  Abstract Spatial capture–recapture (SCR) methods use the location of

detectors (camera traps, hair snares and live-capture traps) and the

locations at which animals were detected (their spatial capture

histories) to estimate animal density. Despite the often large expense

and effort involved in placing detectors in a landscape, there has been

relatively little work on how detectors should be located. A natural

criterion is to place traps so as to maximize the precision of density

estimators, but the lack of a closed-form expression for precision has

made optimizing this criterion computationally demanding. 2. Recent

results by Efford and Boulanger (2019) show that precision can be well

approximated by a function of the expected number of detected

individuals and expected number of recapture events, both of which can

be evaluated at low computational cost. We use these results to develop

a method for obtaining survey designs that optimize this approximate

precision for SCR studies using count or binary proximity detectors, or

multi-catch traps. 3. We show how the basic design protocol can be

extended to incorporate spatially varying distributions of activity

centres and animal detectability. We illustrate our approach by

simulating from a camera trap study of snow leopards in Mongolia and

comparing estimates from our designs to those generated by regular or

optimized grid designs. Optimizing detector placement increased the

number of detected individuals and recaptures, but this did not always

lead to more precise density estimators due to less precise estimation

of the effective sampling area. In most cases, the precision of density

estimators was comparable to that obtained with grid designs, with

improvement in some scenarios where approximate CV(¬D) < 20% and density

varied spatially. 4. Designs generated using our approach are

transparent and statistically grounded. They can be produced for survey

regions of any shape, adapt to known information about animal density

and detectability, and are potentially easier and less costly to

implement. We recommend their use as good, flexible candidate designs

for SCR surveys when reasonable knowledge of model parameters exists. We

provide software for researchers to construct their own designs, in the

form of updates to design functions in the r package oSCR.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1618  
Permanent link to this record
 

 
Author Farrington, J., Tsering, D. url 
  Title Snow leopard distribution in the Chang Tang region of Tibet, China Type Journal Article
  Year 2020 Publication Global Ecology and Conservation Abbreviated Journal  
  Volume (down) 23 Issue Pages  
  Keywords  
  Abstract In 2006 and 2007, the authors conducted human-wildlife conflict surveys in the Tibet Autonomous Region’s (TAR) Shainza, Nyima, and Tsonyi Counties, located in the TAR’s remote Chang Tang region. At this time, prior knowledge of the snow leopard in this vast 700,000 km2 region was limited to just eight firsthand snow leopard sign and conflict location records and 15 secondhand records. These surveys revealed a previously undocumented and growing problem of human-snow leopard conflict. The 2007 survey also yielded 39 new snow leopard conflict incident locations and 24 new snow leopard sign locations. Next, snow leopard telephone interviews and mapping exercises were conducted with Tibet Forestry Bureau staff that yielded an additional 63 and 144 new snow leopard conflict and sighting location records, respectively. These 270 new snow leopard location records, together with 39 records collected by other observers from 1988 to 2009, were compiled into a snow leopard distribution map for the Chang Tang. This effort greatly expanded knowledge of the snow leopard’s distribution in this region which remains one of the least understood of the snow leopard’s key range areas. New knowledge gained on snow leopard distribution in the Chang Tang through this exercise will help identify human-snow leopard conflict hot spots and inform design of human-snow leopard conflict mitigation and conservation strategies for northwest Tibet. Nevertheless, extensive additional field verification work will be required to definitively delineate snow leopard distribution in the Chang Tang. Importantly, since 2006, a number of major transportation infrastructure projects have made the Chang Tang more accessible, including paving of highways, new railroads, and new airports. This has led to a greatly increased number of tourists visiting western Tibet, particularly Mt. Kailash and Lake Manasarovar. At the same time, large areas of the Chang Tang have been fenced for livestock pastures as part of government initiatives to allocate pasturelands to individual families. All three of these developments have a large potential to cause disturbance to snow leopards and their prey species, including by hindering their movements and degrading their habitat. Therefore, future conservation measures in the Chang Tang will need to insure that development activities and the growing number of visitors to the Chang Tang do not adversely affect the distribution of snow leopards and their prey species or directly degrade their habitat.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1601  
Permanent link to this record
 

 
Author Sharma, R. K., Sharma, K., Borchers, D., Bhatnagar, Y. V., Suryawanshi, K. S., Mishra, C. url 
  Title Spatial variation in population-density, movement and detectability of snow leopards in 2 a multiple use landscape in Spiti Valley, Trans-Himalaya Type Journal Article
  Year 2020 Publication bioRxiv Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords Co-existence; land sharing; population-density; spatial capture recapture; Pseudois nayaur Capra sibirica; ungulates; livestock.  
  Abstract The endangered snow leopard Panthera uncia occurs in human use landscapes in the mountains of South and Central Asia. Conservationists generally agree that snow leopards must be conserved through a land-sharing approach, rather than land-sparing in the form of strictly protected areas. Effective conservation through land-sharing requires a good understanding of how snow leopards respond to human use of the landscape. Snow leopard density is expected to show spatial variation within a landscape because of variation in the intensity of human use and the quality of habitat. However, snow leopards have been difficult to enumerate and monitor. Variation in the density of snow leopards remains undocumented, and the impact of human use on their populations is poorly understood. We examined spatial variation in snow leopard density in Spiti Valley, an important snow leopard landscape in India, via spatially explicit capture recapture analysis of camera trap data. We camera trapped an area encompassing a minimum convex polygon of 953 km . We estimated an overall density of 0.49 (95% CI: 0.39-0.73) adult snow leopards per 100 km . Using AIC, our best model showed the density of snow leopards to depend on wild prey density, movement about activity centres to depend on altitude, and the expected number of encounters at the activity centre to depend on topography. Models that also used livestock biomass as a density covariate ranked second, but the effect of livestock was weak. Our results highlight the importance of maintaining high density pockets of wild prey populations in multiple use landscapes to enhance snow leopard conservation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1620  
Permanent link to this record
 

 
Author Koju. N. P, , Bashyal, B., Pandey, B. P., Shah, S. N., Thami, S. ,Bleisch, W. V. url 
  Title First camera-trap record of the snow leopard Panthera uncia in Gaurishankar Conservation Area, Nepal Type Journal Article
  Year 2020 Publication Oryx Abbreviated Journal  
  Volume (down) Issue Pages 1-4  
  Keywords Camera trap, corridor, Gaurishankar Conser- vation Area, Nepal, Panthera uncia, prey abundance, transboundary, snow leopard  
  Abstract The snow leopard Panthera uncia is the flagship species of the high mountains of the Himalayas. There is po- tentially continuous habitat for the snow leopard along the northern border of Nepal, but there is a gap in information about the snow leopard in Gaurishankar Conservation Area. Previous spatial analysis has suggested that the Lamabagar area in this Conservation Area could serve as a transbound- ary corridor for snow leopards, and that the area may con- nect local populations, creating a metapopulation. However, there has been no visual confirmation of the species in Lamabagar. We set !! infrared camera traps for " months in Lapchi Village of Gaurishankar Conservation Area, where blue sheep Pseudois nayaur, musk deer Moschus leucogaster and Himalayan tahr Hemitragus jemlahicus, all snow leopard prey species, had been observed. In November #$!% at &,!$$ m, ' km south-west of Lapchi Village, one camera recorded three images of a snow leopard, the first photographic evidence of the species in the Conservation Area. Sixteen other species of mammals were also recorded. Camera-trap records and sightings indicated a high abun- dance of Himalayan tahr, blue sheep and musk deer. Lapchi Village may be a potentially important corridor for snow leopard movement between the east and west of Nepal and northwards to Quomolongma National Park in China. However, plans for development in the region present in- creasing threats to this corridor. We recommend develop- ment of a transboundary conservation strategy for snow leopard conservation in this region, with participation of Nepal, China and international agencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1622  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: