|
Khatiwada, J. R. & C., M.K. (2006). Status of snow leopard and conflict perception in Kangchenjunga Conservation Area, Eastern Nepal. Nepalese Journal of Zoology, 1(1), 1–8.
Abstract: Kangchenjunga Conservation Area (KCA) is situated in the Taplejung district at the north-eastern region of Nepal. Livestock keeping is the main activity of people for making a living amidst a conflict with snow leopard (Uncia uncia). Each year snow leopard kills a number of livestock resulting significant economic losses for the poor people living in this remote area. Unless the people – snow leopard conflicts is well understood and appropriate conflict management activities are implemented, the long run co-existence between people and snow leopard –especially the existence of snow leopard in this part of the world–will be in question. This has now become an utmost important as the aspiration of the people for economic development has risen significantly and the area has been open to tourism. Study was done by counting snow leopard signs walking systematically in total 18 snow leopard sign transects covering 18.01 km in length in three sites, i.e. Lonak, Khambachen and Dudhpokhari of the Conservation Area. The average sign density was 12.63/km. The livestock depredation by snow leopard for one year (2005-06) was studied by interviewing the herders to understand the responsible and specific bio-physical and economic factors. The study revealed that sub-adult yaks were mostly hunted by snow leopard. Cattle's' winter (December-April) pastures are most vulnerable sites for predation. Presence of bushes, forest and boulders and rugged mountain crevices make good hides for snow leopard. The study also showed that a lax animal guarding system was significantly responsible for high livestock depredation by snow leopard. Blue sheep was observed by walking in selected trails and from vantage points. A total of 354 individual sheep of different age and sex of 14 different herds were recorded during the study period. The study showed that improvement in livestock guarding system should be adopted as the most important activity. However despite the importance of livestock in the KCA it is still not well understood why the herders neglect for proper livestock guarding. Proper guarding system required in winter pastures to reduce the depredation pressure.
|
|
|
The Snow Leopard Conservancy. (2001). Visitor Attitude and Market Survey for Planning Community-based Tourism Initiatives in Rural Ladakh (Vol. SLC Field Series Document No. 2.). Los Gatos, California.
Abstract: Bounded by two of the world's highest mountain ranges, the Great Himalaya and the Karakoram, Ladakh is a land of exhilarating mountain landscapes, rocky gorges and a unique cultural heritage. It is also home to distinctive wildlife such as the snow leopard, blue sheep and Tibetan wild ass, all living in a unique high altitude desert ecosystem. Not surprisingly, Ladakh is becoming a sought after tourist destination for international and domestic visitors alike. Over the past two decades tourism has grown substantially, although erratically, with both positive and less positive results for Ladakh's environment and people. People are recognizing that it is important to act now and engage in an informed dialogue in order to conserve the natural and cultural resources on which the future of tourism and related incomes depend. The Snow Leopard Conservancy (SLC) is working in collaboration with local communities and nongovernmental organizations to foster co-existence between people and predators like the endangered snow leopard by reducing livestock depredation losses and improving household incomes in environmentally friendly, socially responsible and economically viable ways. Well-balanced tourism is one income generating option.
|
|
|
The Snow Leopard Conservancy. (2002). Visitor Satisfaction and Opportunity Survey, Manang, Nepal: Market Opportunities for Linking Community-Based Ecotourism with the Conservation of Snow Leopards in the Annpurna Conservation Area. Report prepared for WWF-Nepal Programme (Vol. SLC Field Document Series No 3).
Abstract: For the past two decades, the Manang or Nyeshang Valley has become one of the most popular
trekking routes in Nepal, attracting over 15,000 trekkers annually (Ale, 2001). The 21-day
circular trek takes the visitor from the lush southern slopes of the Annapurna massif around to
its dry northern slopes more reminiscent of Tibet, through a landscape of spectacular mountain
scenes, interesting villages and diverse cultures. The Manang region also offers prime habitat
for the endangered snow leopard, supporting an estimated 4.8 – 6.7 snow leopards per 100 sq.
km (Oli 1992). This high density has been attributed to the abundance of blue sheep, the snow
leopard's primary large prey species across the Himalayan Mountains and Tibetan Plateau.
|
|
|
The Snow Leopard Conservancy. (2002). A Survey of Kathmandu-based Trekking Agencies: Market Opportunities for Linking Community-Based Ecotourism with the Conservation of Snow Leopard in the Annapurna Conservation Area. Report prepared for WWF-Nepal Programme (Vol. SLC Field Series Document No. 4). Los Gatos, California.
Abstract: In 2001 the King Mahendra Trust for Nature Conservation (KMTNC), Annapurna Conservation Area (ACAP), Snow Leopard Conservancy (SLC) and WWF-Nepal initiated a collaborative project aimed at enhancing ecotourism in the Manang area, in ways that strengthen benefits to local communities while also protecting the environment and the local culture. Manang is known for its relatively dense snow leopard population, along with supporting good numbers of blue sheep, the endangered cat's principal prey through much of the Himalaya. However, snow leopards periodically kill many livestock, leading to retributive killing by herders along with other associated people-wildlife conflict. In order to encourage the local people to better co-exist with snow leopards and other wildlife, SLC, WWF-Nepal and ACAP agreed to explore ways of providing tourism benefits to local communities as an incentive to protect this rare predator and conserve its alpine habitat. Key in this regard is the possibility of developing locally guided nature treks, and accordingly, this survey was conducted in order to assess existing market opportunities and constraints to such ecotourism enterprise.
|
|
|
Lu, Q., Xiao, L., Cheng, C., Lu, Z., Zhao, J., Yao, M. (2021). Snow Leopard Dietary Preferences and Livestock Predation Revealed by Fecal DNA Metabarcoding: No Evidence for Apparent Competition Between Wild and Domestic Prey. Frontiers in Ecology and Evolution, 9(783546), 1–14.
Abstract: Accurate assessments of the patterns and drivers of livestock depredation by wild carnivores are vital for designing effective mitigation strategies to reduce human-wildlife conflict. Snow leopard’s (Panthera uncia) range extensively overlaps pastoralist land- use and livestock predation there is widely reported, but the ecological determinants of livestock consumption by snow leopards remain obscure. We investigated snow leopard dietary habits at seven sites across the Sanjiangyuan region of the Qinghai– Tibetan Plateau (QTP), an area central to the species’ global range. Snow leopard abundance, wild prey composition, and livestock density varied among those sites, thus allowing us to test the effects of various factors on snow leopard diet and livestock predation. Using DNA metabarcoding, we obtained highly resolved dietary data from 351 genetically verified snow leopard fecal samples. We then analyzed the prey preferences of snow leopards and examined ecological factors related to their livestock consumption. Across the sites, snow leopard prey was composed mainly of wild ungulates (mean = 81.5% of dietary sequences), particularly bharal (Pseudois nayaur), and supplemented with livestock (7.62%) and smaller mammals (marmots, pikas, mice; 10.7%). Snow leopards showed a strong preference for bharal, relative to livestock, based on their densities. Interestingly, both proportional and total livestock consumption by snow leopards increased linearly with local livestock biomass, but not with livestock density. That, together with a slight negative relationship with bharal density, supports apparent facilitation between wild and domestic prey. We also found a significant positive correlation between population densities of snow leopard and bharal, yet those densities showed slight negative relationships with livestock density. Our results highlight the importance of sufficient wild ungulate abundance to the conservation of viable snow leopard populations. Additionally, livestock protection is critically needed to reduce losses to snow leopard depredation, especially where local livestock abundances are high.
|
|
|
Wegge, P., Shrestha, R., Flagstad, O. (2012). Snow leopard Panthera uncia predation on livestock and wild prey in a mountain valley in northern Nepal: implications for conservation management. Wildlife Biology, 18(10.2981/11-049), 131–141.
Abstract: The globally endangered snow leopard Panthera uncia is sparsely distributed throughout the rugged mountains in Asia.
Its habit of preying on livestock poses a main challenge to management. In the remote Phu valley in northern Nepal, we
obtained reliable information on livestock losses and estimated predator abundance and diet composition from DNA
analysis and prey remains in scats. The annual diet consisted of 42%livestock. Among the wild prey, bharal (blue sheep/
naur) Pseudois nayaur was by far the most common species (92%). Two independent abundance estimates suggested that
there were six snow leopards in the valley during the course of our study. On average, each snow leopard killed about one
livestock individual and two bharal permonth. Predation loss of livestock estimated fromprey remains in scats was 3.9%,
which was in concordance with village records (4.0%). From a total count of bharal, the only large natural prey in the area
and occurring at a density of 8.4 animals/km2 or about half the density of livestock, snow leopards were estimated to
harvest 15.1% of the population annually. This predation rate approaches the natural, inherent recruitment rate of this
species; in Phu the proportion of kids was estimated at 18.4%. High livestock losses have created a hostile attitude against
the snow leopard and mitigation measures are needed. Among innovative management schemes now being implemented
throughout the species’ range, compensation and insurance programmes coupled with other incentive measures are
encouraged, rather than measures to reduce the snow leopard’s access to livestock. In areas like the Phu valley, where the
natural prey base consists mainly of one ungulate species that is already heavily preyed upon, the latter approach, if
implemented, will lead to increased predation on this prey, which over time may suppress numbers of both prey and
predator.
Keywords: bharal, blue sheep, diet, genetic sampling, naur, Panthera uncia, predation, Pseudois nayaur, scat analysis, snow leopard, wildlife conflict
|
|
|
Ward, A. E. (1921). Game animals of Kashmir and adjacent hill provinces. J.of Bombay Natural Historical Society., 29, 23–35.
Abstract: comments that snow leopard may take blue sheep as prey
|
|
|
Shrestha, R., & Wegge, P. (2008). Wild sheep and livestock in Nepal Trans-Himalaya: coexistence or competition? Environmental Conservation, 32(2), 125–136.
Abstract: Excessive grazing by livestock is claimed to displace wild ungulates in the Trans-Himalaya. This study compares the seasonal diets and habitat use of sympatric wild naur Pseudois nayaur and domestic goat Capra hircus, sheep Ovis aries and free-ranging yak Bos grunniens in north Nepal and analyses their overlap both within and across seasons. Alpinemeadow and the legumes Oxytropis and Chesneya were critical resources for all animal groups. High overlap occurred cross-seasonally when smallstock (sheep and goats) in summer used the spring and autumn ranges of naur. Relatively high total ungulate biomass (3028 kg km-2) and low recruitment of naur (56 young per 100 adult females in autumn) suggested interspecific competition. The spatio-temporal heterogeneity in composition and phenology of food plants across the steep gradient of altitude, together with rotational grazing, appears to indirectly facilitate coexistence of naur and smallstock. However, owing to high crossseasonal (inter-seasonal) overlaps, competition is likely to occur between these two groups at high stocking densities. Within seasons, naur overlapped more with free-ranging yak than with smallstock. As their habitat use and diets were most similar in winter, when both fed extensively on the same species of shrubs, naur was most likely to compete with yak during that season.
|
|
|
Wang, X., Peng, J., & Zhou, H. (2000). Preliminary observations on the distribution and status of dwarf blue sheep Pseudois schaeferi. Oryx, 34(1), 21–26.
Abstract: Describes the drastic decline of the dwarf blue sheep since the 1950's primarily due to over-hunting. There are an estimated 200 individuals remaining in a 295 square km range in Batang county, China. The authors recommend urgent protection for this species.
|
|
|
Schaller, G. B. (1987). Status of large mammals in the Taxkorgan Reserve, Xinjiang, China. Biological-Conservation, 42(1), 53–71.
Abstract: A status survey of large mammals was conducted in the W half of 14 000 km“SUP 2” Taxkorgan Reserve. Only one viable population of fewer than 150 Marco Polo sheep Ovis ammon poli survives; it appears to be augmented by adult males from Russia and Afghanistan during the winter rut. Asiatic ibex Capra ibex occur primarily in the western part of the reserve and blue sheep Pseudois nayaur – the most abundant wild ungulate – in the E and SE parts. The 2 species overlap in the area of contact. Counts revealed an average wild ungulate density of 0.34 animals km“SUP -2”. Snow leopard Panthera uncia were rare, with possibly 50-75 in the reserve, as were wolves Canis lupus and brown bear Ursus arctos. The principal spring food of snow leopard was blue sheep (60%) and marmot (29%). Local people have greatly decimated wildlife. Overgrazing by livestock and overuse of shrubs for fuelwood is turning this arid steppe habitat into desert. -from Authors
|
|