Home | << 1 2 3 4 >> |
![]() |
Mishra, C., & Madhusudan, M. D. (2002). An Incentive Scheme for Wildlife Conservation in the Indian Trans-Himalaya.. Islt: Islt.
Abstract: The habitat of the snow leopard Uncia uncia across South and Central Asia is subject to extensive pastoral use. Levels of livestock depredation by the snow leopard and other carnivores in the region are high, and often provokes retaliatory killing by the herders. This direct threat to large carnivores is further aggravated by a depletion of wild prey due to poaching and out-competition by livestock. In this paper, we describe a pilot project in the Indian Trans-Himalaya, which uses an incentive scheme to create areas free from livestock grazing on community-owned land, thereby fostering conservation commitment among local
pastoralists, as well as contributing directly to an enhancement of wild prey density. |
Augugliaro, C., Christe, P., Janchivlamdan, C., Baymanday, H.,
Zimmermann, F. (2020). Patterns of human interaction with snow leopard and co-predators
in the Mongolian western Altai: Current issues and perspectives. Global Ecology and Conservation, 24, 1–21.
Abstract: Large carnivores can cause considerable economic damage,
mainly due to livestock depredation. These conficts instigate negative attitude towards their conservation, which could in the extreme case lead to retaliatory killing. Here we focus on the snow leopard (Panthera uncia), a species of conservation concern with particularly large spatial requirements. We conducted the study in the Bayan Olgii province, one of the poorest provinces of Mongolia, where the majority of the human population are traditional herders. We conducted a survey among herders (N 261) through a semi-structured questionnaire with the aim to assess: the current and future herding practices and prevention measures, herders’ perceptions and knowledge of the environmental protection and hunting laws; the perceived livestock losses to snow leopard, wolf (Canis lupus), and wolverine (Gulo gulo), as well as to non-predatory factors; the key factors affecting livestock losses to these three large carnivores; and, finally, the attitudes towards these three large carnivores. Non-predatory causes of mortality were slightly higher than depredation cases, representing 4.5% and 4.3% of livestock holdings respectively. While no depredation of livestock was reported from wolverines, snow leopard and wolf depredation made up 0.2% and 4.1% of total livestock holdings, respectively. Herders’ attitudes towards the three large carnivores were negatively affected by the magnitude of the damages since they had a positive overall attitude towards both snow leopard and wolverine, whereas the attitude towards wolf was negative. We discuss conservation and management options to mitigate herder-snow leopard impacts. To palliate the negative consequences of the increasing trend in livestock numbers, herd size reduction should be encouraged by adding economic value to the individual livestock and/or by promoting alternative income and/or ecotourism. Furthermore, co-management between government and stakeholders would help tackle this complex problem, with herders playing a major role in the development of livestock management strategies. Traditional practices, such as regularly shifting campsites and using dogs and corrals at night, could reduce livestock losses caused by snow leopards. |
Karki, A., Panthi, S. (2021). Factors affecting livestock depredation by snow leopards (Panthera uncia) in the Himalayan region of Nepal. PeerJ, 9(e11575), 1–14.
Abstract: The snow leopard (Panthera uncia) found in central Asia is classified as vulnerable species by the International Union for Conservation of Nature (IUCN). Every year, large number of livestock are killed by snow leopards in Nepal, leading to economic loss to local communities and making human-snow leopard conflict a major threat to snow leopard conservation. We conducted formal and informal stakeholder’s interviews to gather information related to livestock depredation with the aim to map the attack sites by the snow leopard. These sites were further validated by district forest office staffs to assess sources of bias. Attack sites older than 3 years were removed from the survey. We found 109 attack sites and visited all the sites for geo location purpose (GPS points of all unique sites were taken). We maintained at least a 100 m distance between attack locations to ensure that each attack location was unique, which resulted in 86 unique locations. A total of 235 km2 was used to define livestock depredation risk zone during this study. Using Maximum Entropy (MaxEnt) modeling, we found that distance to livestock sheds, distance to paths, aspect, and distance to roads were major contributing factors to the snow leopard’s attacks. We identified 13.64 km2 as risk zone for livestock depredation from snow leopards in the study area. Furthermore, snow leopards preferred to attack livestock near livestock shelters, far from human paths and at moderate distance from motor roads. These identified attack zones should be managed both for snow leopard conservation and livestock protection in order to balance human livelihoods while protecting snow leopards and their habitats.
|
Khanal, G., Mishra, C., Suryawanshi, K. R. (2020). Relative influence of wild prey and livestock abundance on
carnivore-caused livestock predation. Ecology and Evolution, , 1–11.
Abstract: Conservation conflict over livestock depredation is one of the
key drivers of large mammalian carnivore declines worldwide. Mitigating this conflict requires strategies informed by reliable knowledge of factors influencing livestock depredation. Wild prey and livestock abundance are critical factors influencing the extent of livestock depredation. We compared whether the extent of livestock predation by snow leopards Panthera uncia differed in relation to densities of wild prey, livestock, and snow leopards at two sites in Shey Phoksundo National Park, Nepal. We used camera trap-based spatially explicit capture–recapture models to estimate snow leopard density; double-observer surveys to estimate the density of their main prey species, the blue sheep Pseudois nayaur; and interview-based household surveys to estimate livestock population and number of livestock killed by snow leopards. The proportion of livestock lost per household was seven times higher in Upper Dolpa, the site which had higher snow leopard density (2.51 snow leopards per 100 km2) and higher livestock density (17.21 livestock per km2) compared to Lower Dolpa (1.21 snow leopards per 100 km2; 4.5 livestock per km2). The wild prey density was similar across the two sites (1.81 and 1.57 animals per km2 in Upper and Lower Dolpa, respectively). Our results suggest that livestock depredation level may largely be determined by the abundances of the snow leopards and livestock and predation levels on livestock can vary even at similar levels of wild prey density. In large parts of the snow leopard range, livestock production is indispensable to local livelihoods and livestock population is expected to increase to meet the demand of cashmere. Hence, we recommend that any efforts to increase livestock populations or conservation initiatives aimed at recovering or increasing snow leopard population be accompanied by better herding practices (e.g., predator-proof corrals) to protect livestock from snow leopard. |
Maheshwari, A., Sathyakumar, S. (2020). Patterns of Livestock Depredation and Large Carnivore
Conservation Implications in the Indian Trans-Himalaya. Journal of Arid Environments, , 1–5.
Abstract: Livestock is one of the major sources of livelihood for the
agro-pastoral communities in central and south Asia. Livestock depredation by large carnivores is a wide-ranging issue that leads to economic losses and a deviance from co-existence. We investigated the grass root factors causing livestock depredation in Kargil, Ladakh and tested the findings of diet analysis in validating reported livestock depredation. Globally vulnerable snow leopard (Panthera uncia) and more common wolf (Canis lupus) were the two main wild predators. A total of 1113 heads of livestock were reportedly killed by wolf (43.6%) followed by unknown predators (31.4%) and snow leopard (21.5%) in the study site from 2009 to 2012, which comes to 2.8% annual livestock losses. Scat analysis also revealed a significant amount of livestock in the diet of snow leopard (47%) and wolf (51%). Poor livestock husbandry practices and traditional livestock corrals were found to be the major drivers contributing in the livestock depredation. Based on the research findings, we worked with the local communities to sensitize them about wildlife conservation and extended limited support for predator proof livestock corrals at a small scale. Eventually it helped in reducing conflict level and conserving the globally threatened carnivores. We conclude that a participatory approach has been successful to generate an example in reducing large carnivore-human conflict in the west Himalaya. |
McCarthy, T. (2000). Snow Leopards in Mongolia.
Keywords: Mongolia; distribution; status; irbis; irbis-enterprises; herders; livestock; economy; conservation; gobi; habitat; Disease; depredation; conflict; predator; prey; hunting; poaching; skins; pelts; coats; furs; bones; trade; Macne; habitat-fragmentation; browse; enterprises; fragmentation; habitat fragmentation; 4090
|
Filla, M., Lama, R. P., Filla, T., Heurich, M., Balkenhol, N., Waltert, M., Khorozyan, I. (2022). Patterns of livestock depredation by snow leopards and effects of intervention strategies: lessons from the Nepalese Himalaya. Wildlife Research, .
Abstract: Context: Large carnivores are increasingly threatened by anthropogenic activities, and their protection is among the main goals of biodiversity conservation. The snow leopard (Panthera uncia) inhabits high-mountain landscapes where livestock depredation drives it into conflicts with local people and poses an obstacle for its conservation.
Aims: The aim of this study was to identify the livestock groups most vulnerable to depredation, target them in implementation of practical interventions, and assess the effectiveness of intervention strategies for conflict mitigation. We present a novel attempt to evaluate intervention strategies for particularly vulnerable species, age groups, time, and seasons. Methods: In 2020, we conducted questionnaire surveys in two regions of the Annapurna Conservation Area, Nepal (Manang, n = 146 respondents and Upper Mustang, n = 183). We applied sample comparison testing, Jacobs’ selectivity index, and generalised linear models (GLMs) to assess rates and spatio-temporal heterogeneity of depredation, reveal vulnerable livestock groups, analyse potential effects of applied intervention strategies, and identify husbandry factors relevant to depredation. Key results: Snow leopard predation was a major cause of livestock mortality in both regions (25.4–39.8%), resulting in an estimated annual loss of 3.2–3.6% of all livestock. The main intervention strategies (e.g. corrals during night-time and herding during daytime) were applied inconsistently and not associated with decreases in reported livestock losses. In contrast, we found some evidence that dogs, deterrents (light, music playing, flapping tape, and dung burning), and the use of multiple interventions were associated with a reduction in reported night-time depredation of yaks. Conclusions and implications: We suggest conducting controlled randomised experiments for quantitative assessment of the effectiveness of dogs, deterrents, and the use of multiple interventions, and widely applying the most effective ones in local communities. This would benefit the long-term co-existence of snow leopards and humans in the Annapurna region and beyond. |