|
Roth, T. L., Armstrong, D. L., Barrie, M. T., & Wildt, D. E. (1997). Seasonal effects on ovarian responsiveness to exogenous gonadotrophins and successful artificial insemination in the snow leopard (Uncia uncia). Reprod Fertil Dev, 9(3), 285–295.
Abstract: Ovaries of the seasonally-breeding snow leopard (Uncia uncia) were examined to determine whether they were responsive to exogenous gonadotrophins throughout the year. The potential of laparoscopic artificial insemination (AI) also was assessed for producing offspring. During the non-breeding, pre-breeding, breeding and post-breeding seasons, females (n = 20) were treated with a standardized, dual- hormone regimen given intramuscularly (600 I.U. of equine chorionic gonadotrophin followed 80-84 h later with 300 I.U. of human chorionic gonadotrophin (hCG)). Laparoscopy was performed 45-50 h after administration of hCG, and all ovarian structures were described. Females with fresh corpora lutea (CL) were inseminated, and anovulatory females were subjected to follicular aspiration to examine oocyte quality. Snow leopards responded to exogenous gonadotrophins throughout the year. Mean number of total ovarian structures (distinct follicles mature in appearance plus CL) did not differ (P > or = 0.05) with season, but the proportion of CL: total ovarian structures was greater (P < 0.01) for the breeding season compared with all other seasons. The proportion of females ovulating was greater (P < 0.05) during the breeding and post-breeding seasons than during the pre-breeding and non- breeding seasons respectively. No Grade-1 quality oocytes were recovered from follicles of anovulatory females. Serum concentrations of oestradiol-17 beta appeared elevated in all females, and neither oestradiol-17 beta concentrations nor progesterone concentrations differed (P > or = 0.05) among seasons. Of 15 females artificially inseminated, the only one that was inseminated in the non-breeding season became pregnant and delivered a single cub. This is the first successful pregnancy resulting from AI in this endangered species.
|
|
|
Subbotin, A. E., & Istomov, S. V. (2009). The population status of snow leopards Uncia uncia (Felidae, Carnivora) in the western Sayan Mountain Ridge. Doklady Biologicl Sciences, 425, 183–186.
Abstract: The snow leopard (Uncia uncial Schreber, 1776) is the most poorly studied species of the cat family in the world and, in particular, in Russia, where the northern periphery of the species area (no more than 3% of it) is located in the Altai-Hangai-Sayan range [1]. It is generally known that the existing data on the Russian part of the snow leopard population have never been a result of targeted studies; at best, they have been based on recording the traces of the snow leopard vital activity [2]. This is explained by the snow leopard's elusive behavior, inaccessibility of its habitats for humans, and its naturally small total numbers in the entire species area. All published data on the population status of the snow leopard in Russia, from the first descriptions of the species [3-6] to the latest studies [7, 8] are subjective, often speculative, and are not confirmed by
quantitative estimates. It is obvious, however, that every accurate observation of this animal is of particular interest [9]. The purpose of our study was to determine the structure and size of the population group presumably inhabiting the Western Sayan mountain ridge at the northern boundary of the species area
|
|
|
Trepanier, L. A., Cribb, A. E., Spielberg, S. P., & Ray, K. (1998). Deficiency of cytosolic arylamine N-acetylation in the domestic cat and wild felids caused by the presence of a single NAT1-like gene. Pharmacogenetics, 8(2), 169–179.
Abstract: The purpose of this study was to determine the molecular basis for a relative deficiency in the cat of cytosolic arylamine N- acetyltransferase (NAT), an enzyme family that is important in the metabolism of xenobiotics and that normally consists of at least two related enzymes, NAT1 and NAT2. N-acetyltransferase in feline liver showed high affinity (mean Km = 2.1 microM) for p-aminobenzoic acid, an NAT1 selective substrate in humans and rabbits, but showed a very poor affinity (mean Km > 10 mM) for sulfamethazine, an NAT2 selective substrate in humans and rabbits. Immunoreactive N-acetyltransferase was detected in feline liver, bladder and colon using an NAT1-specific antipeptide antibody, but was not detected in any tissues using an NAT2- specific antibody. Southern blot analysis of genomic DNA demonstrated a single band in domestic cats using each of six restriction digests; single bands were also found on Southern blot analysis of six wild felids. The deduced amino acid sequence of the central portion of feline N-acetyltransferase, obtained by polymerase chain reaction amplification in both domestic cats and seven wild felids (lion, tiger, lynx, snow leopard, bobcat, Asian leopard cat and cheetah), contained three residues, Phe125, Arg127, and Tyr129, which determine NAT1-like substrate specificity in humans. These results support the conclusion that cytosolic arylamine N-acetylation activity is low in the cat because of the presence of a single N-acetyltransferase that has substrate specificity, immunogenicity and sequence characteristics similar to human NAT1, and that the unusual presence of only a single N- acetyltransferase gene appears to be a family wide trait shared by other felids.
|
|
|
Wolf, M., & Ale, S. (2009). Signs at the Top: Habitat Features Influencing Snow Leopard Uncia Uncia Activity in Sagarmatha National Park, Nepal. Journal of Mammalogy, 90(3), 604–611.
Abstract: We used logistic regression to examine factors that affected the spatial distribution of sign (scrapes, feces, footprints, spray or scent marks, and rubbing sites) in a newly reestablished population of snow leopards (Uncia uncia) in Sagarmatha (Mount Everest) National Park, Nepal. Our results indicate that terrain and human activity were the most important factors determining the spatial distribution of leopard activity, whereas presence of their major prey species (Himalayan tahr [Hemitragus jemlahicus]) had only a moderate effect. This suggests that localities at which these animals are active represent a trade-off between suitable habitat and avoidance of potential risk from anthropogenic origins. However, the influence of prey presence was likely underestimated because of the methodology used, and likely weighed in the trade-off as well.
|
|
|
Dickman, A., Macdonald, E., Macdonald, D. (2011). A review of financial instruments to pay for predator conservation and encourage human–carnivore coexistence. PNAS, 108(34), 13937–13944.
Abstract: One of the greatest challenges in biodiversity conservation today is how to facilitate protection of species that are highly valued at a global scale but have little or even negative value at a local scale. Imperiled species such as large predators can impose significant economic costs at a local level, often in poverty-stricken rural areas where households are least able to tolerate such costs, and impede efforts of local people, especially traditional pastoralists, to escape from poverty. Furthermore, the costs and benefits involved in predator conservation often include diverse dimensions, which are hard to quantify and nearly impossible to reconcile with one another. The best chance of effective conservation relies upon translating the global value of carnivores into tangible local benefits large enough to drive conservation “on the ground.” Although human–carnivore coexistence involves significant noneconomic values, providing financial incentives to those affected negatively by carnivore presence is a common strategy for encouraging such coexistence, and this can also have important benefits in terms of reducing poverty. Here, we provide a critical overview of such financial instruments, which we term “payments to encourage coexistence”; assess the pitfalls and potentials of these methods, particularly compensation and insurance, revenuesharing, and conservation payments; and discuss how existing strategies of payment to encourage coexistence could be combined to facilitate carnivore conservation and alleviate local poverty.
|
|
|
Suryawanshi, K. R., Bhatnagar, Y. V. B., Redpath, S., Mishra, C. (2013). People, predators and perceptions: patterns of livestock depredation by snow leopards and wolves. Journal of Applied Ecology, 50, 550–560.
Abstract: 1. Livestock depredation by large carnivores is an important conservation and economic concern
and conservation management would benefit from a better understanding of spatial variation
and underlying causes of depredation events. Focusing on the endangered snow leopard
Panthera uncia and the wolf Canis lupus, we identify the ecological factors that predispose
areas within a landscape to livestock depredation. We also examine the potential mismatch
between reality and human perceptions of livestock depredation by these carnivores whose
survival is threatened due to persecution by pastoralists.
2. We assessed the distribution of the snow leopard, wolf and wild ungulate prey through field
surveys in the 4000 km2 Upper Spiti Landscape of trans-Himalayan India. We interviewed local
people in all 25 villages to assess the distribution of livestock and peoples’ perceptions of the risk
to livestock from these carnivores. We monitored village-level livestock mortality over a 2-year
period to assess the actual level of livestock depredation. We quantified several possibly influential
independent variables that together captured variation in topography, carnivore abundance
and abundance and other attributes of livestock. We identified the key variables influencing livestock
depredation using multiple logistic regressions and hierarchical partitioning.
3. Our results revealed notable differences in livestock selectivity and ecological correlates of
livestock depredation – both perceived and actual – by snow leopards and wolves. Stocking
density of large-bodied free-ranging livestock (yaks and horses) best explained people’s threat
perception of livestock depredation by snow leopards, while actual livestock depredation was
explained by the relative abundance of snow leopards and wild prey. In the case of wolves,
peoples’ perception was best explained by abundance of wolves, while actual depredation by
wolves was explained by habitat structure.
4. Synthesis and applications. Our results show that (i) human perceptions can be at odds
with actual patterns of livestock depredation, (ii) increases in wild prey populations will intensify
livestock depredation by snow leopards, and prey recovery programmes must be accompanied
by measures to protect livestock, (iii) compensation or insurance programmes should
target large-bodied livestock in snow leopard habitats and (iv) sustained awareness
programmes are much needed, especially for the wolf.
|
|
|
Li, J., Yin, H., Wang, D., Jiagong, Z., Lu, Zhi. (2013). Human-snow leopard conflicts in the Sanjiangyuan Region of the Tibetan Plateau. Biological Conservs, (166), 118–123.
Abstract: Conflicts between humans and snow leopards are documented across much of their overlapping distribution
in Central Asia. These conflicts manifest themselves primarily in the form of livestock depredation
and the killing of snow leopards by local herders. This source of mortality to snow leopards is a key conservation concern. To investigate human-snow leopard conflicts in the Sanjiangyuan Region of the Tibetan Plateau, we conducted household interviews about local herders’ traditional use of snow leopard
parts, livestock depredation, and overall attitudes towards snow leopards. We found most respondents
(58%) knew that snow leopard parts had been used for traditional customs in the past, but they claimed
not in the past two or three decades. It may be partly due to the issuing of the Protection of Wildlife Law
in 1998 by the People’s Republic of China. Total livestock losses were damaging (US$ 6193 per household
in the past 1 year), however snow leopards were blamed by herders for only a small proportion of those
losses (10%), as compared to wolves (45%) and disease (42%). Correspondingly, the cultural images of
snow leopards were neutral (78%) and positive (9%) on the whole. It seems that human-snow leopard
conflict is not intense in this area. However, snow leopards could be implicated by the retaliatory killing
of wolves. We recommend a multi-pronged conservation program that includes compensation, insurance
programs, and training local veterinarians to reduce livestock losses.
|
|
|
Maheshwari, A., Midha, N., Chehrukupalli, A. (2014). Participatory Rural Appraisal and Compensation Intervention: Challenges and Protocols While Managing Large Carnivore–Human Conflict. Human Dimensions of Wildlife: An International Journal, 19, 62–71.
Abstract: When large carnivores cause socioeconomic losses in a community, conflict increases,
retaliatory killing of the carnivore can occur, and conservation efforts are undermined.
We focused on Participatory Rural Appraisal (PRA) and economic compensation
schemes as approaches for managing conflict. PRA is a tool for collecting data on
the large carnivore–human conflict and economic compensation schemes for those
affected negatively by carnivore presence. We reviewed published papers and reports
on large carnivore–human conflicts, PRA, and compensation schemes. This article
details insights into common pitfalls, key lessons learned, possible solutions including
new approaches for compensation and protocols to be followed while managing large
carnivore–human conflict. We hope to contribute to a meaningful dialogue between
locals, managers, and researchers and help in effective implementation of conservation
programs to mitigate large carnivore–human conflict around the protected areas.
|
|
|
Suryawanshi, K. R., Bhatia, S., Bhatnagar, Y. V., Redpath, S., Mishra, C. (2014). Multiscale Factors Affecting Human Attitudes toward Snow Leopards and Wolves. Conservation biology, 00, 1–10.
Abstract: The threat posed by large carnivores to livestock and humans makes peaceful coexistence between
them difficult. Effective implementation of conservation laws and policies depends on the attitudes of local
residents toward the target species. There are many known correlates of human attitudes toward carnivores,
but they have only been assessed at the scale of the individual. Because human societies are organized hierarchically, attitudes are presumably influenced by different factors at different scales of social organization, but this scale dependence has not been examined.We used structured interview surveys to quantitatively assess the attitudes of a Buddhist pastoral community toward snow leopards (Panthera uncia) and wolves (Canis lupus).
We interviewed 381 individuals from 24 villages within 6 study sites across the high-elevation Spiti Valley in
the Indian Trans-Himalaya. We gathered information on key explanatory variables that together captured
variation in individual and village-level socioeconomic factors.We used hierarchical linear models to examine how the effect of these factors on human attitudes changed with the scale of analysis from the individual to the community. Factors significant at the individual level were gender, education, and age of the respondent (for wolves and snow leopards), number of income sources in the family (wolves), agricultural production, and large-bodied livestock holdings (snow leopards). At the community level, the significant factors included the number of smaller-bodied herded livestock killed by wolves and mean agricultural production (wolves) and village size and large livestock holdings (snow leopards). Our results show that scaling up from the individual to higher levels of social organization can highlight important factors that influence attitudes of people toward wildlife and toward formal conservation efforts in general. Such scale-specific information can help managers apply conservation measures at appropriate scales. Our results reiterate the need for conflict management programs to be multipronged.
|
|
|
Chen, P., Gao, Y., Lee, A. T. L., Cering, L., Shi, K., Clark, S. G. (2016). Human–carnivore coexistence in Qomolangma (Mt. Everest) Nature Reserve, China: Patterns and compensation. Biological Conservation, (197), 18–26.
Abstract: Livestock depredation by large carnivores is frequently reported in Qomolangma (Mt. Everest) National Nature Reserve, Tibet Autonomous Region of China. Seeking to minimize conflicts, we assessed depredation patterns and ways to upgrade the compensation program. We gathered 9193 conflict records over 2011–2013 to determine the extent and tempo-spatial patterns of the depredation.Weinterviewed 22 local officials and 94 residents to learn their views on depredations and to assess the adequacy of compensation. Data showed that wolves (Canis lupus), lynx (Lynx lynx), and snowleopards (Panthera uncia)were themajor livestock predators. Total livestock
loss accounted for 1.2% of the entire stockholding (n=846,707) in the region. Wolves and lynx tended to take sheep and goats,whereas snowleopards favored yaks and cattle in relation to their proportional abundance. Predation mostly occurred in March through July. Livestock depredation by all predators when combined was best explained by terrain ruggedness and density of small- and large-bodied livestock. Temporal and spatial predation patterns variedamong carnivores.Most respondents (74%) attributed depredation causes to an increase in carnivore abundance. Only 7% blamed lax livestock herding practice for predation losses. Five percent said that
predation was the result of livestock population increases, while 11% had no idea. The compensation scheme was found to be flawed in all aspects—predation verification, application procedure, compensation standard, operational resource allocation, making payment, and other problems. To enhance management for human–carnivore coexistence, we recommend a problem-oriented, integrated, adaptive approach that targets the complex social context of the conflict and addresses the interconnected functions of decision-making process.
|
|