Suryawanshi, K. R., Redpath, S. M., Bhatnagar, Y. V., Ramakrishnan, U., Chaturvedi, V., Smout, S. C., Mishra, C. Impact of wild prey availability on livestock predation by snow leopards. Royal Society Open Science, , 1–11.
Abstract: An increasing proportion of the world�s poor is rearing livestock today, and the global livestock population is growing. Livestock predation by large carnivores and their retaliatory
killing is becoming an economic and conservation concern. A common recommendation for carnivore conservation and for reducing predation on livestock is to increase wild prey populations based on the assumption that the carnivores will consume this alternative food. Livestock predation, however, could either reduce or intensify with increases in wild prey depending on prey choice and trends in carnivore abundance. We show that the extent of livestock predation by the endangered snow leopard Panthera uncia
intensifies with increases in the density of wild ungulate prey, and subsequently stabilizes. We found that snow leopard density, estimated at seven sites, was a positive linear function of the density of wild ungulates�the preferred prey�and showed no discernible relationship with livestock density. We also found that modelled livestock predation increased with livestock density. Our results suggest that snow leopard conservation would benefit from an increase in wild ungulates, but that would intensify the problem of livestock predation for pastoralists. The potential benefits of increased wild prey abundance in reducing livestock predation
can be overwhelmed by a resultant increase in snow leopard populations. Snow leopard conservation efforts aimed atfacilitating increases in wild prey must be accompanied by greater assistance for better livestock
protection and offsetting the economic damage caused by carnivores.
|
Khan, B., Ablimit, A., Nawaz, M. A., Ali, R., Khan, M. Z., Jaffaruddin, Karim, R. (2014). Pastoralist experience and tolerance of snow leopard, wolf and lynx predation in Karakoram Pamir Mountains. Journal of Biodiversity and Envirnomental Sciences, 5(4), 214–229.
Abstract: Human-carnivore conflict is a common conservation and livelihood issue in mountain communities. This study was conducted to understand nature and extent of socio-ecological interaction between pastoralism and wildlife conservation in cold deserts of Karakoram Pamir Mountains (KPM) between China and Pakistan. Study revealed that livestock depredation is a burning issue in KPM with varying intensity from place to place, depending upon wild prey abundance, herd size, herding practices, predator type and age. Snow leopard, wolf and lynx were the major predators, while Brown bear despite its presence was reported being less fatal to livestock. Snow leopard killed highest number of animals (88.7% n=1440) mostly sheep and goats whereas, wolf killed more juvenile yaks. Lynx was found occasionally predating on young domestic crop. Highest number of kills was recorded from pastures during summer months (July-Aug) when animals were free grazing or were kept inside pens at night. Wild prey base being abysmally low, livestock seemed offering a considerable portion of diet to carnivores. Despite considerable losses from carnivores, more respondents in KNP (Pakistan) buffer zone had sympathies for predators compared to those in TNR (China) who were annoyed of the carnivores. Although people attributed escalating human-carnivore conflict to a higher level of protection to wild animals in Protected Areas (PA) but efforts are still needed to judiciously integrate conservation with local livelihood and development needs, otherwise herders may continue losing their livestock to predators and retaliatory killing of endangered carnivore species i.e., Snow leopard and Wolf may continue unabated and would further destabilize the fragile mountain ecosystem.
|
Sharma, K. M. C., Thomas. Johannson, Orjan. Ud Din, Jaffar. Bayarjargal, A. (2010). Snow Leopards and Telemetry: Experiences and Challenges. Telemetry in Wildlife Science, 13(No. 1), 1–5.
Abstract: The snow leopard Panthera uncia is one of the least studied felids in the world. Little is know about various aspects of the ecology of the snow leopard, which is cryptic in nature and found across 12 countries in Central Asia. Most research on snow leopards has been based on non-invasive methods such as sign surveys for presence (e.g. Jackson and Hunter 1996), scat analyses for diet (e.g. Chundawat and Rawat 1992; Oli et al., 2008, 2010) for population estimation, and studies based on human interviews (Mehta and Heinen 2001; Mishra and Bagchi 2006).
Despite this plethora of studies employing non-invasive techniques, several crucial questions about snow leopard ecology remain unanswered. Information about the animal’s home range, dispersal, corridors, pattern of habitat use, movement patterns, hunting frequency, behavior and intra – specific interactions is not available yet. In order to design population monitoring studies using camera traps or DNA analyses, one needs a good understanding of snow leopard ecology, including the home range and movement patterns (Williams et al., 2002). Telemetry is still the best available method and perhaps much less invasive than direct observations for studying the biology and ecology of cryptic animals.
|
Abdusaljamov I.A., M. S. R. (2001). Conservation strategy of rare and endanger vertebrate species of Tajikistan republic. Bulletin of Academy of Sciences of Republic Tajikistan, 2(143), 40–48.
|
Woodroffe, R., & Ginsberg, J. R. (1998). Edge effects and the extinction of populations inside protected areas. Science Washington D.C., 280(5372), 2126–2128.
Abstract: Theory predicts that small populations may be driven to extinction by random fluctuations in demography and loss of genetic diversity through drift. However, population size is a poor predictor of extinction in large carnivores inhabiting protected areas. Conflict with people on reserve borders is the major cause of mortality in such populations, so that border areas represent population sinks. The species most likely to disappear from small reserves are those that range widely-and are therefore most exposed to threats on reserve borders-irrespective of population size. Conservation efforts that combat only stochastic processes are therefore unlikely to avert extinction.
|
Subbotin, A. E., & Istomov, S. V. (2009). The population status of snow leopards Uncia uncia (Felidae, Carnivora) in the western Sayan Mountain Ridge. Doklady Biologicl Sciences, 425, 183–186.
Abstract: The snow leopard (Uncia uncial Schreber, 1776) is the most poorly studied species of the cat family in the world and, in particular, in Russia, where the northern periphery of the species area (no more than 3% of it) is located in the Altai-Hangai-Sayan range [1]. It is generally known that the existing data on the Russian part of the snow leopard population have never been a result of targeted studies; at best, they have been based on recording the traces of the snow leopard vital activity [2]. This is explained by the snow leopard's elusive behavior, inaccessibility of its habitats for humans, and its naturally small total numbers in the entire species area. All published data on the population status of the snow leopard in Russia, from the first descriptions of the species [3-6] to the latest studies [7, 8] are subjective, often speculative, and are not confirmed by
quantitative estimates. It is obvious, however, that every accurate observation of this animal is of particular interest [9]. The purpose of our study was to determine the structure and size of the population group presumably inhabiting the Western Sayan mountain ridge at the northern boundary of the species area
|
Prakash, I. (1985). Asian predators of livestock. Parasites, pests and predators.World animal science, B2, 405–410.
Abstract: Outlines the distribution, status and predatory behaviour on livestock of Chinese alligator Alligator sinensis, gharial Gavialis gangeticus and several species of Crocodylus and Python; and of wolf Canis lupus, Asiatic jackal C. aureus, dhole (Indian wild dog) Cuon alpinus, brown bear Ursus arctos, Asiatic black bear Selenarctos thibetanus, striped hyaena Hyaena hyaena, clouded leopard Neofelis nebulosa, leopard (panther) Panthera pardus, tiger P. tigris, lion P. leo, snow leopard P. uncia, other Felidae and Viverridae. -P.J.Jarvis
|
Jalanka, H. H. (1991). Medetomidine, medetomidine-ketamine combinations and atipamezole in nondomestic mammals: A clinical, physiological and comparative study. Dep.Clinical Sciences, Coll.Veterinary Med., Helsinki, Finland, .
Abstract: Hibiscus section Furcaria is composed of over 400 species. Kenaf (Hibiscus cannabinus) and rosella (Hibiscus sabdariffa) belong to this section. Both species are important fiber crops. The survey reported in this book was undertaken in order to find new sources of genetic diversity collect, save, and distribute germ plasm. The work contains a taxonomic key of section Furcaria in southern Africa, 8 species, a description of the species illustrated by line-drawings, and distribution maps. (Also discussed are; H. mechowii, H. meeusei, H. surattensis, H. acetosella, H. torrei, H. mastersianus, H. hiernianus, H. altissimus, H. diversifolius sub sp. rivularis.)
|
O'Neill, J. (1980). Nepal's snow leopard: too beautiful for its own good? Scholastic Science World, 36(9), 4–6.
|
Burgener, N., Gusset, M., & Schmid, H. (2008). Frustrated appetitive foraging behavior, stereotypic pacing, and fecal glucocorticoid levels in snow leopards (Uncia uncia) in the Zurich Zoo (Vol. 11).
Abstract: This study hypothesized that permanently frustrated, appetitive-foraging behavior caused the stereotypic pacing regularly observed in captive carnivores. Using 2 adult female snow leopards (Uncia uncia), solitarily housed in the Zurich Zoo, the study tested this hypothesis experimentally with a novel feeding method: electronically controlled, time-regulated feeding boxes. The expected result of employing this active foraging device as a successful coping strategy was reduced behavioral and physiological measures of stress, compared with a control-feeding regime without feeding boxes. The study assessed this through behavioral observations and by evaluating glucocorticoid levels noninvasively from feces. Results indicated that the 2 snow leopards did not perform successful coping behavior through exercising active foraging behavior or through displaying the stereotypic pacing. The data support a possible explanation: The box-feeding method did not provide the 2 snow leopards with the external stimuli to satisfy their appetitive behavioral needs. Moreover, numerous other factors not necessarily or exclusively related to appetitive behavior could have caused and influenced the stereotypic pacing.
|