toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Durbach, I., Borchers, D., Sutherland, C., Sharma, K. url 
  Title Fast, flexible alternatives to regular grid designs for spatial capture–recapture. Type (down) Research Article
  Year 2020 Publication Methods in Ecology and Evolution Abbreviated Journal  
  Volume Issue Pages 1-13  
  Keywords camera trap, population ecology,sampling, spatial capture-recapture, surveys  
  Abstract Spatial capture–recapture (SCR) methods use the location of

detectors (camera traps, hair snares and live-capture traps) and the

locations at which animals were detected (their spatial capture

histories) to estimate animal density. Despite the often large expense

and effort involved in placing detectors in a landscape, there has been

relatively little work on how detectors should be located. A natural

criterion is to place traps so as to maximize the precision of density

estimators, but the lack of a closed-form expression for precision has

made optimizing this criterion computationally demanding. 2. Recent

results by Efford and Boulanger (2019) show that precision can be well

approximated by a function of the expected number of detected

individuals and expected number of recapture events, both of which can

be evaluated at low computational cost. We use these results to develop

a method for obtaining survey designs that optimize this approximate

precision for SCR studies using count or binary proximity detectors, or

multi-catch traps. 3. We show how the basic design protocol can be

extended to incorporate spatially varying distributions of activity

centres and animal detectability. We illustrate our approach by

simulating from a camera trap study of snow leopards in Mongolia and

comparing estimates from our designs to those generated by regular or

optimized grid designs. Optimizing detector placement increased the

number of detected individuals and recaptures, but this did not always

lead to more precise density estimators due to less precise estimation

of the effective sampling area. In most cases, the precision of density

estimators was comparable to that obtained with grid designs, with

improvement in some scenarios where approximate CV(¬D) < 20% and density

varied spatially. 4. Designs generated using our approach are

transparent and statistically grounded. They can be produced for survey

regions of any shape, adapt to known information about animal density

and detectability, and are potentially easier and less costly to

implement. We recommend their use as good, flexible candidate designs

for SCR surveys when reasonable knowledge of model parameters exists. We

provide software for researchers to construct their own designs, in the

form of updates to design functions in the r package oSCR.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1618  
Permanent link to this record
 

 
Author Jiang, Z. url 
  Title Snow leopards in the Dulan International Hunting Ground, Qinghai, China Type (down) Report
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; International; hunting; Qinghai; China; project; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; surveys; survey; mountains; mountain; province; transect; study; area; transects; pug; pug marks; pug-marks; marks; scrapes; scrape; density; densities; wild; ungulates; ungulate; region; camera; environment; photo; capture; population; population size; population-size; Animals; Animal; 20; livestock; Human; attitudes; attitude; tibetan; 30; nature; reserve; uncia; Uncia uncia; Uncia-uncia; species; snow line; snow-line; endemic; alpine; central; Central Asia; asia; countries; country; fox; range; areas; Xinjiang; inner; Inner-Mongolia; Mongolia; Tibet; gansu; Sichuan; habitat; protection; nature reserves; reserves; cat; populations; domestic; laws; law; field; field surveys; field survey; field-surveys; field-survey; Kunlun; distribution; survival; status; Data; conservation  
  Abstract From March to May, 2006œªwe conducted extensive snow leopard surveys in the Burhanbuda Mountain Kunlun Mountains, Qinghai Province, China. 32 linear transect of 5~15 km each, which running through each vegetation type, were surveyed within the study area. A total of 72 traces of snow leopard were found along 4 transects (12.5% of total transects). The traces included pug marks or footprints, scrapes and urine marks. We estimated the average density of wild ungulates in the region was 2.88ñ0.35 individuals km-2(n=29). We emplaced 16 auto2 trigger cameras in different environments and eight photos of snow leopard were shot by four cameras and the capture rate of snow leopard was 71.4%. The minimum snow leopard population size in the Burhanbuda Mountain was two, because two snow leopards were phototrapped by different cameras at almost same time. Simultaneously, the cameras also shot 63 photos of other wild animals, including five photos are unidentified wild animals, and 20 photos of livestock. We evaluated the human attitudes towards snow leopard by interviewing with 27 Tibetan householders of 30 householders live in the study area. We propose to establish a nature reserve for protecting and managing snow leopards in the region. Snow leopard (Uncia uncia) is considered as a unique species because it lives above the snow line, it is endemic to alpines in Central Asia, inhabiting in 12 countries across Central Asia (Fox, 1992). Snow leopard ranges in alpine areas in Qinghai, Xinjiang, Inner Mongolia, Tibet, Gansu and Sichuan in western China (Liao, 1985, 1986; Zhou, 1987; Ma et al., 2002; Jiang & Xu, 2006). The total population and habitat of snow leopards in China are estimated to be 2,000~2,500 individuals and 1,824,316 km2, only 5% of which is under the protection of nature reserves. The cat's current range is fragmented (Zou & Zheng, 2003). Due to strong human persecutions, populations of snow leopards decreased significantly since the end of the 20th century. Thus, the

snow leopards are under the protection of international and domestic laws. From March to May, 2006, we conducted two field surveys in Zhiyu Village, Dulan County in Burhanbuda Mountain, Kunlun Mountains, China to determine the population, distribution and survival status of snow leopards in the area. The aim of the study was to provide ecologic data for snow leopard conservation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Project funded by International Snow Leopard Trust Small Grants Program. Approved no  
  Call Number SLN @ rana @ 1068 Serial 493  
Permanent link to this record
 

 
Author Ming, M. url 
  Title Camera trapping on snow leopards in the Muzat Valley, Reserve, Xinjiang, P.R. China (October-December 2005) Type (down) Report
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages 1-5  
  Keywords behavior; camera trapping; China; feces; ibex; infrared trapping cameras; livestock; population size; snow leopard; Tomur; transect; Xinjiang  
  Abstract The main purpose of this work was to study the use of infrared trapping cameras to estimate Snow Leopard population size in a specific study area. This is the first time a study of this nature has taken place in China. During 71 days of field work, a total of 36 cameras were set up in Muzat Valley adjacent to the Tomur Nature Reserve in Xinjiang Province. We expended approximately 2094 trap days total. At least 32 pictures of Snow Leopards, 22 pictures of other wild species and 72 pictures of livestock were taken in the Muzat Valley. Meanwhile, 20 transects were run and 31 feces sample were collected. We also observed the behavior of ibex for 77.3 hours and found a total of approximately 264 ibexes in the research area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 970 Serial 682  
Permanent link to this record
 

 
Author WWF Russia & Mongolia url 
  Title WWF Altai-Sayan Newsletter Type (down) Report
  Year 2010 Publication Abbreviated Journal  
  Volume Issue 14 Pages  
  Keywords Altai Sayan, WWF, camera trap, Argut River, poaching, conservation, Tuva  
  Abstract A Snow Leopard – A Treasure of Tuva. A beautiful animal as a winner of a wide-scale public vote

WWF will train a Scat Detection Dog for snow leopard monitoring project

WWF assessed the possibility to fight illegal helicopter hunting

WWF considers support of antipoaching activities an essential part of wildlife conservation in Altai – Sayan

Snow Leopard Camera Trapping in Argut River Valley

“Stars” of Tuva appeal to Snow Leopard Conservation
 
  Address  
  Corporate Author Communication Staff of Altai - Sayan Programme in Russia and Mongolia Thesis  
  Publisher WWF Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes October-December 2010. Email: tivanitskaya@wwf.ru Approved no  
  Call Number SLN @ rana @ Serial 1297  
Permanent link to this record
 

 
Author Henschel, P.; Ray, J. url 
  Title Leopards in African Rainforests: Survey and Monitoring Techniques Type (down) Miscellaneous
  Year 2003 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords forest leopards; african rainforests; survey; monitoring techniques; lope reserve; gabon; central africa; congo; zaire; field testing; populations; wild meat; relative abundance; density; live-trapping; presence and absense surveys; ad-hoc survey; bushmeat; systematic survey; monitoring; individual identification; tracks; Discriminant Function Analysis; genotyping; scat; Hair; Dna; remote photography; camera trapping; capture rates; Trailmaster; Camtrakker; bait; duikers; pigs; elephant; bongo; okapi; human hunters; 5300  
  Abstract Monitoring Techniques Forest leopards have never been systematically surveyed in African forests, in spite of their potentially vital ecological role as the sole large mammalian predators in these systems. Because leopards are rarely seen in this habitat, and are difficult to survey using the most common techniques for assessing relative abundances of forest mammals, baseline knowledge of leopard ecology and responses to human disturbance in African forests remain largely unknown. This technical handbook sums up the experience gained during a two-year study of leopards by Philipp Henschel in the Lop‚ Reserve in Gabon, Central Africa, in 2001/2002, supplemented by additional experience from carnivore studies conducted by Justina Ray in southwestern Central African Republic and eastern Congo (Zaire) . The main focus of this effort has been to develop a protocol that can be used by fieldworkers across west and central Africa to estimate leopard densities in various forest types. In developing this manual, Henschel tested several indirect methods to assess leopard numbers in both logged and unlogged forests, with the main effort devoted to testing remote photography survey methods developed for tigers by Karanth (e.g., Karanth 1995, Karanth & Nichols 1998; 2000; 2002), and modifying them for the specific conditions characterizing African forest environments. This handbook summarizes the results of the field testing, and provides recommendations for techniques to assess leopard presence/absence, relative abundance, and densities in African forest sites. We briefly review the suitability of various methods for different study objectives and go into particular detail on remote photography survey methodology, adapting previously developed methods and sampling considerations specifically to the African forest environment. Finally, we briefly discuss how camera trapping may be used as a tool to survey other forest mammals. Developing a survey protocol for African leopards is a necessary first step towards a regional assessment and priority setting exercise targeted at forest leopards, similar to those carried out on large carnivores in Asian and South American forests.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Wildlife Conservation Society  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 515 Serial 382  
Permanent link to this record
 

 
Author Jackson, R.; Roe, J.; Wangchuk, R.; Hunter, D. url 
  Title Estimating Snow Leopard Population Abundance Using Photography and Capture-Recapture Techniques Type (down) Miscellaneous
  Year 2006 Publication Wildlife Society Bulletin Abbreviated Journal  
  Volume 34 Issue 3 Pages 772-781  
  Keywords abundance; camera trapping; capture rates; dentistry; identification; India; photography; snow leopard; Uncia uncia  
  Abstract Conservation and management of snow leopards (Uncia uncial) has largely relied on anecdotal evidence and presence-absence data due to their cryptic nature and the difficult terrain they inhabit. These methods generally lack the scientific rigor necessary to accurately estimate population size and monitor trends. We evaluated the use of photography in capture-mark-recapture (CMR) techniques for estimating snow leopard population abundance and density within Hemis National Park, Ladakh, India. We placed infrared camera traps along actively used travel paths, scent-sprayed rocks, and scrape sites within 16-30 kmý sampling grids in successive winters during January and March 2003-2004. We used head-on, oblique, and side-view camera configurations to obtain snow leopard photographs at varying body orientations. We calculated snow leopard abundance estimates using the program CAPTURE. We obtained a total of 66 and 49 snow leopard captures resulting in 8.91 and 5.63 individuals per 100 trap nights during 2003 and 2004, respectively. We identified snow leopards based on the distinct pelage patters located primarily on the forelimbs, flanks, and dorsal surface of the tail. Capture probabilities ranged from 0.33 to 0.67. Density estimates ranged from 8.49 (SE+0.22) individuals per 100 kmý in 2003 to 4.45 (SE+0.16) in 2004. We believe the density disparity between years is attributable to different trap density and placement rather than to an actual decline in population size. Our results suggest that photographic capture-mark-recapture sampling may be a useful tool for monitoring demographic patterns. However, we believe a larger sample size would be necessary for generating a statistically robust estimate of population density and abundance based on CMR models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 912 Serial 476  
Permanent link to this record
 

 
Author McCarthy, K.; Fuller, T.; Ming, M.; McCarthy, T.; Waits, L.; Jumabaev, K. url 
  Title Assessing Estimators of Snow Leopard Abundance Type (down) Miscellaneous
  Year 2008 Publication Journal of Widlife Management Abbreviated Journal  
  Volume 72 Issue 8 Pages 1826-1833  
  Keywords abundance; camera,capture-recapture,density,index,predator:prey ratios,techniques,Tien Shan,Uncia; leopard; SaryChat; sign surveys; Slims; snow; snow-leopard; snow leopard; Tomur  
  Abstract The secretive nature of snow leopards (Uncia uncia) makes them difficult to monitor, yet conservation efforts require accurate and precise methods to estimate abundance. We assessed accuracy of Snow Leopard Information Management System (SLIMS) sign surveys by comparing them with 4 methods for estimating snow leopard abundance: predator:prey biomass ratios, capture-recapture density estimation, photo-capture rate, and individual identification through genetic analysis. We recorded snow leopard sign during standardized surveys in the SaryChat Zapovednik, the Jangart hunting reserve, and the Tomur Strictly Protected Area, in the Tien Shan Mountains of Kyrgyzstan and China. During June-December 2005, adjusted sign averaged 46.3 (SaryChat), 94.6 (Jangart), and 150.8 (Tomur) occurrences/km. We used

counts of ibex (Capra ibex) and argali (Ovis ammon) to estimate available prey biomass and subsequent potential snow leopard densities of 8.7 (SaryChat), 1.0 (Jangart), and 1.1 (Tomur) snow leopards/100 km2. Photo capture-recapture density estimates were 0.15 (n = 1 identified individual/1 photo), 0.87 (n = 4/13), and 0.74 (n = 5/6) individuals/100 km2 in SaryChat, Jangart, and Tomur, respectively. Photo-capture rates

(photos/100 trap-nights) were 0.09 (SaryChat), 0.93 (Jangart), and 2.37 (Tomur). Genetic analysis of snow leopard fecal samples provided minimum population sizes of 3 (SaryChat), 5 (Jangart), and 9 (Tomur) snow leopards. These results suggest SLIMS sign surveys may be affected by observer bias and environmental variance. However, when such bias and variation are accounted for, sign surveys indicate relative abundances similar to photo rates and genetic individual identification results. Density or abundance estimates based on capture-recapture or ungulate biomass did not agree with other indices of abundance. Confidence in estimated densities, or even detection of significant changes in abundance of snow leopard, will require more effort and better documentation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 881 Serial 653  
Permanent link to this record
 

 
Author Xu, A.; Jiang, Z.; Li, C.; Guo, J.; Da, S.; Cui, Q.; Yu, S.; Wu, G. url 
  Title Status and conservation of the snow leopard Panthera uncia in the Gouli Region, Kunlun Mountains, China Type (down) Miscellaneous
  Year 2008 Publication Oryx Abbreviated Journal  
  Volume 42 Issue Pages 460-463  
  Keywords Camera trapping,China,human-wildlife conflict,Kunlun Mountains,Panthera uncia,snow leopard,trace.  
  Abstract The elusive snow leopard Panthera unica is a rare and little studied species in China. Over 1 March-15 May 2006 we conducted a survey for the snow leopard in the Gouli Region, East Burhanbuda Mountain, Kunlun Mountains, Qinghai Province, China, in an area of c. 300 km2 at altitudes of 4,000-4,700 m. We surveyed 29 linear transects with a total length of c. 440 km, and located a total of 72 traces (pug marks, scrapes and urine marks) of snow leopard along four of the transects. We obtained eight photographs of snow leopard from four of six camera traps. We also recorded 1,369 blue sheep, 156 Tibetan gazelles, 47 argali, 37 red deer and one male white-lipped deer. We evaluated human attitudes towards snow leopard by interviewing the heads of 27 of the 30 Tibetan households living in the study area. These local people did not consider that snow leopard is the main predator of their livestock, and thus there is little retaliatory killing. Prospects for the conservation of snow leopard in this area therefore appear to be good. We analysed the potential threats to the species and propose the establishment of a protected area for managing snow leopard and the fragile alpine ecosystem of this region. (c) 2008 Fauna & Flora International.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 900 Serial 1032  
Permanent link to this record
 

 
Author Sharma, R. url 
  Title Of Men and Mountain Ghosts: Glimpses from the Rooftop of the World Type (down) Magazine Article
  Year 2010 Publication GEO Abbreviated Journal  
  Volume 3 Issue 6 Pages 56-67  
  Keywords snow leopard, camera trap, Spiti, India, Sharma  
  Abstract Catching a glimpse of a snow leopard is a rare and exciting event for anyone. For researchers, hideen camera traps have become a vital tool in their work.  
  Address  
  Corporate Author Thesis  
  Publisher GEO International Place of Publication India Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ Serial 1139  
Permanent link to this record
 

 
Author Rovero, F., Augugliaro, C., Havmoller, R. W., Groff, C., Zimmerman, F., Oberosler, V., Tenan, S. url  doi
  Title Co-occurrence of snow leopard Panthera uncia, Siberian ibex Capra sibirica and livestock: potential relationships and effects Type (down) Journal Article
  Year 2018 Publication Oryx Abbreviated Journal  
  Volume Issue Pages 1-7  
  Keywords Altai mountains, camera trapping, human&#65533; wildlife conflict, Mongolia, occupancy, occurrence interactions, Siberian ibex, snow leopard  
  Abstract Understanding the impact of livestock on native

wildlife is of increasing conservation relevance. For the

Vulnerable snow leopard Panthera uncia, wild prey reduction,

intensifying human&#65533;wildlife conflicts and retaliatory

killings are severe threats potentially exacerbated by the

presence of livestock. Elucidating patterns of co-occurrence

of snow leopards, wild ungulate prey, and livestock, can be

used to assess the compatibility of pastoralism with conservation.

We used camera trapping to study the interactions of

livestock, Siberian ibex Capra sibirica and snow leopards in

a national park in the Altai mountains, Mongolia. We obtained

&#63284;&#63289;&#63284; detections of wild mammals and &#63289;&#63281;&#63282; of domestic

ungulates, dogs and humans. Snow leopards and Siberian

ibex were recorded &#63281;&#63284; and &#63283;&#63283; times, respectively. Co-occurrence

modelling showed that livestock had a higher estimated

occupancy (&#63280;.&#63286;&#63285;) than ibex, whose occupancy was

lower in the presence of livestock (&#63280;.&#63281;&#63281;) than in its absence

(&#63280;.&#63283;&#63284;&#65533;&#63280;.&#63283;&#63285; depending on scenarios modelled). Snow leopard

occupancy did not appear to be affected by the presence of

livestock or ibex but the robustness of such inference was

limited by uncertainty around the estimates. Although our

sampling at presumed snow leopard passing sites may have

led to fewer ibex detections, results indicate that livestock

may displace wild ungulates, but may not directly affect

the occurrence of snow leopards. Snow leopards could still

be threatened by livestock, as overstocking can trigger

human&#65533;carnivore conflicts and hamper the conservation

of large carnivores. Further research is needed to assess

the generality and strength of our results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1465  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: