|
Lui, C. -guang, Zheng, C. -wu, & Ren, J. -rang. (2003). Research Foods and Food Sources About Snow Leopard (Panthera uncia) (Vol. 31).
Abstract: During 1984-1987, 1992-1995, and 1998-2001, the author researched snow leopard, white lipped deer, kiang, and argali in Qinghai, Gansu, Xingiang, and Sichuan. He collected 644 snow leopard droppings, and analyzed kinds of foods and sources from perch. Snow leopard's foods include most main foods, main foods, comparative foods and lesser foods. Studied one another
index of faunistic congruence of foods species that from various distribution and variation both perch vertical variety and foods of snow leopard.
|
|
|
LI. J, W. A. N. G. D., YIN. H, ZHAXI. D, JIAGONG. Z, SCHALLER. G. B, MISHRA. C, MCCARTHY. T. M, WANG. H, WU. L, XIAO. L, BASANG. L, ZHANG. Y, ZHOU. Y, LU. Z. (2013). Role of Tibetan Buddhist Monasteries in Snow Leopard Conservation. Conservation Biology, 00, 1–8.
Abstract: The snow leopard (Panthera uncia) inhabits the rugged mountains in 12 countries of Central Asia,
including the Tibetan Plateau. Due to poaching, decreased abundance of prey, and habitat degradation, it was listed as endangered by the International Union for Conservation of Nature in 1972. Current conservation strategies, including nature reserves and incentive programs, have limited capacities to protect snow leopards. We investigated the role of Tibetan Buddhist monasteries in snow leopard conservation in the Sanjiangyuan region in China’s Qinghai Province on the Tibetan Plateau. From 2009 to 2011, we systematically surveyed snow leopards in the Sanjiangyuan region. We used the MaxEnt model to determine the relation of their presence to environmental variables (e.g., elevation, ruggedness) and to predict snow leopard distribution. Model results showed 89,602 km2 of snow leopard habitat in the Sanjiangyuan region, of which 7674 km2 lay within Sanjiangyuan Nature Reserve’s core zones. We analyzed the spatial relation between snow leopard habitat and Buddhist monasteries and found that 46% of monasteries were located in snow leopard habitat and 90% were within 5 km of snow leopard habitat. The 336 monasteries in the Sanjiangyuan region could protect more snow leopard habitat (8342 km2) through social norms and active patrols than the nature reserve’s core zones. We conducted 144 household interviews to identify local herders’ attitudes and behavior toward snow leopards and other wildlife. Most local herders claimed that they did not kill wildlife, and 42% said they did not kill wildlife because it was a sin in Buddhism. Our results indicate monasteries play an important role in snow leopard conservation. Monastery-based snow leopard conservation could be extended to other Tibetan Buddhist regions that in total would encompass about 80% of the global range of snow leopards.
|
|
|
Suryawanshi, K. R., Khanyari, M., Sharma, K., Lkhagvajav, P., Mishra, C. (2019). Sampling bias in snow leopard population estimation studies. Population Eccology, , 1–9.
Abstract: Accurate assessments of the status of threatened species and their conservation
planning require reliable estimation of their global populations and robust monitoring
of local population trends. We assessed the adequacy and suitability of studies
in reliably estimating the global snow leopard (Panthera uncia) population. We
compiled a dataset of all the peer-reviewed published literature on snow leopard
population estimation. Metadata analysis showed estimates of snow leopard density
to be a negative exponential function of area, suggesting that study areas have generally
been too small for accurate density estimation, and sampling has often been
biased towards the best habitats. Published studies are restricted to six of the
12 range countries, covering only 0.3�0.9% of the presumed global range of the
species. Re-sampling of camera trap data from a relatively large study site
(c.1684 km2) showed that small-sized study areas together with a bias towards
good quality habitats in existing studies may have overestimated densities by up to
five times. We conclude that current information is biased and inadequate for generating
a reliable global population estimate of snow leopards. To develop a rigorous
and useful baseline and to avoid pitfalls, there is an urgent need for
(a) refinement of sampling and analytical protocols for population estimation of
snow leopards (b) agreement and coordinated use of standardized sampling protocols
amongst researchers and governments across the range, and (c) sampling
larger and under-represented areas of the snow leopard's global range.
|
|
|
Oli, M. K., & Rogers, E. M. (1996). Seasonal pattern in group size and population composition of blue sheep in Manang, Nepal. Journal of Wildlife Management, 60(4), 797–801.
Abstract: Blue sheep (Pseudois nayaur) are the principal prey of the endangered snow leopard (Panthera uncia) in the Himalayas and adjacent ranges. We studied group size and population composition of blue sheep in Manang District, Annapurna Conservation Area, Nepal. Overall mean group size was 15.6 (SE = 1.3), but it varied seasonally (P lt 0.001), with significantly smaller groups in winter than in other seasons. Mixed groups were most numerous in all seasons, and there was no evidence of sexual segregation. Yearling sex ratio (93.7 M:100 F) did not vary seasonally, nor did the ratio deviate from parity. Adult sex ratio showed a seasonal pattern favoring males post-parturition but female-biased during the rut and pre-parturition. Seasonal variation in sex-specific mortality is offered as a plausible explanation for the observed pattern in adult sex ratio.
|
|
|
Johansson, O., Koehler, G., Rauset, G. R.< Samelius, G., Andren, H., Mishra, C., Lhagvarsuren, P., McCarthy, T., Low, M. (2018). Sex specific seasonal variation in puma and snow leopard home range utilization. Ecosphere, 9(8), 1–14.
Abstract: Territory size is often larger for males than for females in species without biparental care. For large solitary carnivores, this is explained by males encompassing a set of female territories to monopolize their reproduction during mating (area maximization). However, males are expected to behave more like females outside of breeding, with their area utilization being dependent on the range required to secure food resources (area minimization). To examine how male and female solitary carnivores adjust their spatial organization during the year as key resources (mates and prey) change, we radio‐collared 17 pumas (Puma concolor; nine males and eight females) and 14 snow leopards (Panthera uncia; seven males and seven females) and estimated home range size and overlap on two temporal scales (annual vs. monthly). Contrary to expectation, we found no evidence that males monopolized females (the mean territory overlap between females and the focal male during the mating season was 0.28 and 0.64 in pumas and snow leopards, respectively). Although male�male overlap of annual home ranges was comparatively high (snow leopards [0.21] vs. pumas [0.11]), monthly home range overlaps were small (snow leopards [0.02] vs. pumas [0.08]) suggesting strong territoriality. In pumas, both males and females reduced their monthly home ranges in winter, and at the same time, prey distribution was clumped and mating activity increased. In snow leopards, females showed little variation in seasonal home range size, following the seasonal stability in their primary prey. However, male snow leopards reduced their monthly home range utilization in the mating season. In line with other studies, our results suggest that female seasonal home range variation is largely explained by changes in food resource distribution. However, contrary to expectations, male territories did not generally encompass those of females, and males reduced their home ranges during mating. Our results show that male and female territorial boundaries tend to intersect in these species, and hint at the operation of female choice and male mate guarding within these mating systems.
|
|
|
Moheb, Z., Fuller, T. K., Zahler, P. I. (2022). Snow Leopard – human conflict as a conservation challenge – a review. Snow Leopard Reports, 1, 11–24.
Abstract: Human conflict with large carnivores continues to be a great conservation challenge, and conflict with snow leopards (Panthera uncia) has been studied to understand causes and propose mitigation schemes. While the nature of snow leopard-human conflict is similar in most cases, reported studies have been case- and area-specific with mitigation strategies not necessarily based on a synthesis of relevant literature. We reviewed snow leopard literature published from 1970-2020 to identify the main drivers of human-snow leopard conflict (HSLC) and describe conservation and conflict mitigation strategies commonly employed. Based on 47 relevant peer-reviewed articles, review papers, book chapters, project reports, and other grey literature, we identified four major conflict domains: livestock management-related, socio-economic/human-related, ecological, and policy-related. Most articles suggested more than one conflict mitigation scheme. Three conflict mitigation domains – preventive, supportive, and compensatory – were widely reflected in the snow leopard-human conflict literature. The most commonly reported mitigation schemes included: 1) building or predator-proofing corrals; 2) training shepherds and improving livestock guarding; 3) livestock insurance schemes; 4) compensation for livestock predation; 5) capacity building, education, and awareness programs; and 6) improved breeding and use of guard dogs. Future management efforts need to tailor their approach depending on cultural, economic, and ecological circumstances.
|
|
|
Moheb, Z., Sahel, K., Fazli, M., Hakimi, M., Ismaily, S. (2023). Snow Leopard Intrusions into Livestock Corrals in Badakhshan, Afghanistan: Challenges and Solutions. Snow Leopard Reports, , 1–5.
Abstract: Snow leopards (Panthera uncia) frequently prey on livestock throughout their range, posing a potential threat to human livelihoods and endangering the predator’s own survival. In this study, we document seven incidents of snow leopards intruding into livestock corrals and engaging in surplus killing in three districts of Badakhshan, Afghanistan. Six of the predation incidents were attributed to a single individual, occurring in five locations of Wakhan District and eventually in Yumgan District, where the captured animal was relocated. The remaining predation incident occurred in Keran-wa Munjan District, marking the first recorded evidence of snow leopards in this area. In all but one of the incidents, the predator was trapped in the corral it intruded and safely released back to the wild with the support of the National Environmental Protection Agency (NEPA) and Wildlife Conservation Society (WCS) team in Afghanistan. Local communities have been supportive in releasing the snow leopard despite losses of over 50 livestock. To mitigate negative interactions between snow leopards and livestock, conservation efforts should focus on conserving prey species, implementing predator- proof measures for livestock corrals, and utilizing collar tracking when a trapped snow leopard is found in a corral. Unfortunately, when an individual repeatedly enters livestock corrals and continues killing livestock, capture and relocation to captivity often become the only viable option to address the problem and ensure the animal’s safety from retaliatory action by affected herders.
|
|
|
Wegge, P., Shrestha, R., Flagstad, O. (2012). Snow leopard Panthera uncia predation on livestock and wild prey in a mountain valley in northern Nepal: implications for conservation management. Wildlife Biology, 18(10.2981/11-049), 131–141.
Abstract: The globally endangered snow leopard Panthera uncia is sparsely distributed throughout the rugged mountains in Asia.
Its habit of preying on livestock poses a main challenge to management. In the remote Phu valley in northern Nepal, we
obtained reliable information on livestock losses and estimated predator abundance and diet composition from DNA
analysis and prey remains in scats. The annual diet consisted of 42%livestock. Among the wild prey, bharal (blue sheep/
naur) Pseudois nayaur was by far the most common species (92%). Two independent abundance estimates suggested that
there were six snow leopards in the valley during the course of our study. On average, each snow leopard killed about one
livestock individual and two bharal permonth. Predation loss of livestock estimated fromprey remains in scats was 3.9%,
which was in concordance with village records (4.0%). From a total count of bharal, the only large natural prey in the area
and occurring at a density of 8.4 animals/km2 or about half the density of livestock, snow leopards were estimated to
harvest 15.1% of the population annually. This predation rate approaches the natural, inherent recruitment rate of this
species; in Phu the proportion of kids was estimated at 18.4%. High livestock losses have created a hostile attitude against
the snow leopard and mitigation measures are needed. Among innovative management schemes now being implemented
throughout the species’ range, compensation and insurance programmes coupled with other incentive measures are
encouraged, rather than measures to reduce the snow leopard’s access to livestock. In areas like the Phu valley, where the
natural prey base consists mainly of one ungulate species that is already heavily preyed upon, the latter approach, if
implemented, will lead to increased predation on this prey, which over time may suppress numbers of both prey and
predator.
Keywords: bharal, blue sheep, diet, genetic sampling, naur, Panthera uncia, predation, Pseudois nayaur, scat analysis, snow leopard, wildlife conflict
|
|
|
Oli, M. K., Taylor, I. R., & Rogers, M. E. (1994). Snow leopard Panthera unica predation of livestock: An assessment of local perceptions in the Annapurna Conservation Area, Nepal. Biological Conservation, 68(1), 63–68.
Abstract: Public attitudes towards snow leopard Panthera uncia predation of domestic livestock were investigated by a questionnaire survey of four villages in snow leopard habitat within the Annapurna Conservation Area, Nepal. Most local inhabitants were subsistence farmers, many dependent upon yaks, oxen, horses and goats, with an average livestock holding of 26.6 animals per household. Reported losses to snow leopards averaged 0.6 and 0.7 animals per household in two years of study, constituting 2.6% of total stockholding but representing in monetary terms almost a quarter of the average annual Nepali national per capita income. Local people held strongly negative attitudes towards snow leopards and most suggested that total extermination of leopards was the only acceptable solution to the predation problem. Snow leopards were reported to be killed by herdsmen in defence of their livestock. The long-term success of snow leopard conservation programmes may depend upon the satisfactory resolution of the predation conflict. Some possible ways of reducing predation losses are also discussed.
|
|
|
Cancellare, I. A., Weckworth, B., Caragiulo, A., Pilgrim, K. L., McCarthy, T. M., Abdullaev, A., Amato, G., Bian, X., Bykova, E., Dias-Freedman, I., Gritsina, M., Hennelly, L. M., Janjua, S., Johansson, O., Kachel, S., Karnaukhov, A., Korablev, M., Kubanychbekov, Z., Kulenbekov, R., Liang, X., Lkhagvajav, P., Meyer, T. K., Munkhtsog, B., Munkhtsog, B., Nawaz, M. A., Ostrowski, S., Paltsyn, M., Poyarkov, A., Rabinowitz, S., Rooney, T., Rosen, T., Rozhnov, V. V., Sacks, B. N., Schwartz, M. K., McCarthy, K. P. (2024). Snow leopard phylogeography and population structure supports two global populations with single refugial origin. Biodiversity and Conservation, , 1–19.
Abstract: Snow leopards (Panthera uncia) inhabit the mountainous regions of High Asia, which experienced serial glacial contraction and expansion during climatic cycles of the Pleistocene. The corresponding impacts of glacial vicariance may have alternately promoted or constrained genetic differentiation to shape the distribution of genetic lineages and population structure. We studied snow leopard phylogeography across High Asia by examining range-wide historical and contemporary genetic structure with mitochondrial DNA and microsatellite markers. We genotyped 182 individuals from across snow leopard range and sequenced portions of the mitogenome in a spatially stratified subset of 80 individuals to infer historical biogeographic and contemporary patterns of genetic diversity. We observed a lack of phylogeographic structure, and analyses suggested a single refugial origin for all sampled populations. Molecular data provided tentative evidence of a hypothesized glacial refugia in the Tian Shan-Pamir-Hindu Kush-Karakoram mountain ranges, and detected mixed signatures of population expansion. Concordant assessments of microsatellite data indicated two global genetic populations, though we detected geographic differences between historical and contemporary population structure and connectivity inferred from mitochondrial and microsatellite data, respectively. Using the largest sample size and geographic coverage to date, we demonstrate novel information on the phylogeographic history of snow leopards, and corroborate existing interpretations of snow leopard connectivity and genetic structure. We recommend that conservation efforts incorporate genetic data to define and protect meaningful conservation units and their underlying genetic diversity, and to maintain the snow leopard’s adaptive potential and continued resilience to environmental changes.
|
|