|
Meiers, S. T. (1992). Habitat use by captive puma (Felis concolor) and snow leopards (Pathera uncia) at the Lincoln Park Zoo, Chicago, Illinois. Ph.D. thesis, DePaul University, .
Abstract: Between May 1990 and January 1991, behavioral observations were made of two captive pumas (Felis concolor Linnaeus), and two captive snow leopards (Panthera uncia Schreber) in their outdoor exhibits at the Lincoln Park Zoological Gardens, Chicago, Illinois. Behaviors compared within and between species included: 1) time spend in the different habitat types; 2) time budgets for the different behaviors: laying, moving, sitting, standing, crouching, in the tree, drinking, urinating, defecating, within their inside dens, and “behavior not determined” when the identity or behavior of the individuals could not be determined; and 3) mobility of the animals within their exhibits. Also examined were: 4) preferences for different habitat types; 5) recommendations for future exhibit designs. Both species located themselves within their exhibits in a non-random manner. The majority of cats' time was spent in elevated locations (i.e., gunite ledges approximately 1-5.5 m above ground-level). Snow leopards exhibited this tendency to a greater extent than did the pumas. Both species also spent the majority of their time in the lying-down behavior; again snow leopards displayed this tendency significantly more than the pumas. Pumas were highly mobile and changed locations and behaviors in their exhibit significantly more than the snow leopards. No significant differences were noted between conspecifics in regard to habitat type preference, or mobility within the exhibit. Suggestions for future exhibit design include elevated locations for the cats to lay and look around within and outside their exhibits, caves for access to shade or relief from inclement weather, and ground surfaces to move about on. Features for exhibit design should take into consideration the natural habitat of the cat to occupy the exhibit.
|
|
|
Koshkarev, E. (1997). Has the Snow Leopard Disappeared from Eastern Sayan and Western Hovsogol? In R.Jackson, & A.Ahmad (Eds.), (pp. 96–107). Lahore, Pakistan: Islt.
|
|
|
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
|
|
|
Fox, J. L., & Nurbu, C. (1990). Hemis, a national park for snow leopards in India's Trans-Himalaya. Int.Pedigree Book of Snow Leopards, 6, 71–84.
|
|
|
Aromov B. (2004). Hissar state nature reserve.
Abstract: Presented is history of the Hissar nature reserve's establishment, physic and geographic description, types of soils, flora and fauna The 28 species of mammals, 103 nested birds, 19 amphibians and reptiles and 2 fishes are presented in nature reserve. Number of snow leopard assessed as 2-3 families, bear 130 individuals, wild boar 460, Turkestan lynx 90,ibex 1700 individuals.
|
|
|
Houston Zoological Society. (1979). Houston's summer snow.
|
|
|
Changxi, X., Bai, D., Lambert, J. P., Li, Y., Cering, L., Gong, Z., Riordan, P., Shi, K. (2022). How Snow Leopards Share the Same Landscape with Tibetan Agro-pastoral Communities in the Chinese Himalayas. Journal of Resources and Ecology, 13(3), 483–500.
Abstract: The snow leopard (Panthera uncia) inhabits a human-altered alpine landscape and is often tolerated by residents in regions where the dominant religion is Tibetan Buddhism, including in Qomolangma NNR on the northern side of the Chinese Himalayas. Despite these positive attitudes, many decades of rapid economic development and population growth can cause increasing disturbance to the snow leopards, altering their habitat use patterns and ultimately impacting their conservation. We adopted a dynamic landscape ecology perspective and used multi-scale technique and occupancy model to better understand snow leopard habitat use and coexistence with humans in an 825 km2 communal landscape. We ranked eight hypothetical models containing potential natural and anthropogenic drivers of habitat use and compared them between summer and winter seasons within a year. HABITAT was the optimal model in winter, whereas ANTHROPOGENIC INFLUENCE was the top ranking in summer (AICcw≤2). Overall, model performance was better in the winter than in the summer, suggesting that perhaps some latent summer covariates were not measured. Among the individual variables, terrain ruggedness strongly affected snow leopard habitat use in the winter, but not in the summer. Univariate modeling suggested snow leopards prefer to use rugged land in winter with a broad scale (4000 m focal radius) but with a lesser scale in summer (30 m); Snow leopards preferred habitat with a slope of 22° at a scale of 1000 m throughout both seasons, which is possibly correlated with prey occurrence. Furthermore, all covariates mentioned above showed inextricable ties with human activities (presence of settlements and grazing intensity). Our findings show that multiple sources of anthropogenic activity have complex connections with snow leopard habitat use, even under low human density when anthropogenic activities are sparsely distributed across a vast landscape. This study is also valuable for habitat use research in the future, especially regarding covariate selection for finite sample sizes in inaccessible terrain.
|
|
|
Xiao, C., Bai, D., Lambert, J. P., Li, Y., Cering, L., Gong, Z., Riordan, P., Shi, K. (2022). How Snow Leopards Share the Same Landscape with Tibetan Agro-pastoral Communities in the Chinese Himalayas. Journal of Resources and Ecology, 13(3), 483–500.
Abstract: The snow leopard (Panthera uncia) inhabits a human-altered alpine landscape and is often tolerated by residents in regions where the dominant religion is Tibetan Buddhism, including in Qomolangma NNR on the northern side of the Chinese Himalayas. Despite these positive attitudes, many decades of rapid economic development and population growth can cause increasing disturbance to the snow leopards, altering their habitat use patterns and ultimately impacting their conservation. We adopted a dynamic landscape ecology perspective and used multi-scale technique and occupancy model to better understand snow leopard habitat use and coexistence with humans in an 825 km2 communal landscape. We ranked eight hypothetical models containing potential natural and anthropogenic drivers of habitat use and compared them between summer and winter seasons within a year. HABITAT was the optimal model in winter, whereas ANTHROPOGENIC INFLUENCE was the top ranking in summer (AICcw≤2). Overall, model performance was better in the winter than in the summer, suggesting that perhaps some latent summer covariates were not measured. Among the individual variables, terrain ruggedness strongly affected snow leopard habitat use in the winter, but not in the summer. Univariate modeling suggested snow leopards prefer to use rugged land in winter with a broad scale (4000 m focal radius) but with a lesser scale in summer (30 m); Snow leopards preferred habitat with a slope of 22° at a scale of 1000 m throughout both seasons, which is possibly correlated with prey occurrence. Furthermore, all covariates mentioned above showed inextricable ties with human activities (presence of settlements and grazing intensity). Our findings show that multiple sources of anthropogenic activity have complex connections with snow leopard habitat use, even under low human density when anthropogenic activities are sparsely distributed across a vast landscape. This study is also valuable for habitat use research in the future, especially regarding covariate selection for finite sample sizes in inaccessible terrain.
|
|
|
Li, J., Yin, H., Wang, D., Jiagong, Z., Lu, Zhi. (2013). Human-snow leopard conflicts in the Sanjiangyuan Region of the Tibetan Plateau. Biological Conservs, (166), 118–123.
Abstract: Conflicts between humans and snow leopards are documented across much of their overlapping distribution
in Central Asia. These conflicts manifest themselves primarily in the form of livestock depredation
and the killing of snow leopards by local herders. This source of mortality to snow leopards is a key conservation concern. To investigate human-snow leopard conflicts in the Sanjiangyuan Region of the Tibetan Plateau, we conducted household interviews about local herders’ traditional use of snow leopard
parts, livestock depredation, and overall attitudes towards snow leopards. We found most respondents
(58%) knew that snow leopard parts had been used for traditional customs in the past, but they claimed
not in the past two or three decades. It may be partly due to the issuing of the Protection of Wildlife Law
in 1998 by the People’s Republic of China. Total livestock losses were damaging (US$ 6193 per household
in the past 1 year), however snow leopards were blamed by herders for only a small proportion of those
losses (10%), as compared to wolves (45%) and disease (42%). Correspondingly, the cultural images of
snow leopards were neutral (78%) and positive (9%) on the whole. It seems that human-snow leopard
conflict is not intense in this area. However, snow leopards could be implicated by the retaliatory killing
of wolves. We recommend a multi-pronged conservation program that includes compensation, insurance
programs, and training local veterinarians to reduce livestock losses.
|
|
|
Ishunin G.I. (1984). Hunting and nature conservation in Uzbekistan (history and current status).
Abstract: Origination of fauna complexes in Uzbekistan from the Mustier period to present time is described. The remains of brown bear, cave hyena, wolf, fox, corsac, stone marten, badger, and snow leopard were found in cave Amankutan (western extremities of the Zaravshan ridge). Cattle breeding and farming has begun since mesolite; cave bear, Stenon horse, Pleistocene donkey, camel and aurochs dropped from the region's fauna, while marchor and striped hyena moved to the Hissar ridge, Babatag and Kugitang mountains from south; jackal, chaus, tiger, and Iranian otter settled along the river valleys. In the Neolith and Bronze Age cattle breeding and farming continued to develop, while hunting was less important. Mass hinting for animals in the time of Alexander the Great, Chingiz Khan, and Babur, the ruler of Fergana, is described. Mass extermination of kulan, goitered gazelle, saiga, and other game species also took place later more than 12,000 saigas were killed during one hunt at the end of 19th century in the Volga region. Animals also die from natural disasters the “djut”. Data concerning a current status of goitered gazelle, saiga, Bukhara deer, marchor, Severtsev's sheep, and urial is given.
|
|