toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Khanyari, M., Zhumabai uulu, K., Luecke, S., Mishra, C., Suryawanshi, K. url 
  Title Understanding population baselines: status of mountain ungulate populations in the Central Tien Shan Mountains, Kyrgyzstan Type Journal Article
  Year 2020 Publication Mammalia Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords conservation; human-use landscapes; hunting concession; mountain ungulates; population baselines; protected areas.  
  Abstract We assessed the density of argali (Ovis ammon) and ibex

(Capra sibirica) in Sarychat-Ertash Nature Reserve and its neighbouring

Koiluu valley. Sarychat is a protected area, while Koiluu is a human-use

landscape which is a partly licenced hunting concession for mountain

ungulates and has several livestock herders and their permanent

residential structures. Population monitoring of mountain ungulates can

help in setting measurable conservation targets such as appropriate

trophy hunting quotas and to assess habitat suitability for predators

like snow leopards (Panthera uncia). We employed the double-observer

method to survey 573 km2 of mountain ungulate habitat inside Sarychat

and 407 km2 inside Koiluu. The estimated densities of ibex and argali in

Sarychat were 2.26 (95% CI 1.47–3.52) individuals km-2 and 1.54 (95% CI

1.01–2.20) individuals km-2, respectively. Total ungulate density in

Sarychat was 3.80 (95% CI 2.47–5.72) individuals km-2. We did not record

argali in Koiluu, whereas the density of ibex was 0.75 (95% CI

0.50–1.27) individuals km-2. While strictly protected areas can achieve

high densities of mountain ungulates, multi-use areas can harbour

meaningful

though suppressed populations. Conservation of mountain ungulates and

their predators can be enhanced by maintaining Sarychat-like “pristine”

areas interspersed within a matrix of multi-use areas like Koiluu.
 
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1610  
Permanent link to this record
 

 
Author Johansson, O., Ausilio, G., Low, M., Lkhagvajav, P., Weckworth, B., Sharma, K. url 
  Title The timing of breeding and independence for snow leopard females and their cubs. Type Journal Article
  Year 2020 Publication Mammalian Biology Abbreviated Journal  
  Volume Issue Pages  
  Keywords Age of independence; Life-history trade-offs; Panthera uncia; Parental care; Pre-dispersal behavior; Separation; Subadult  
  Abstract Significant knowledge gaps persist on snow leopard demography

and reproductive behavior. From a GPS-collared population in Mongolia,

we estimated the timing of mating, parturition and independence. Based

on three mother–cub pairs, we describe the separation phase of the cub

from its mother as it gains independence. Snow leopards mated from

January–March and gave birth from April–June. Cubs remained with their

mother until their second winter (20–22 months of age) when cubs started

showing movements away from their mother for days at a time. This

initiation of independence appeared to coincide with their mother mating

with the territorial male. Two female cubs remained in their mothers’

territory for several months after initial separation, whereas the male

cub quickly dispersed. By comparing the relationship between body size

and age of independence across 11 solitary, medium-to-large felid

species, it was clear that snow leopards have a delayed timing of

separation compared to other species. We suggest this may be related to

their mating behavior and the difficulty of the habitat and prey capture

for juvenile snow leopards. Our results, while limited, provide

empirical estimates for understanding snow leopard ecology and for

parameterizing population models.
 
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1613  
Permanent link to this record
 

 
Author Singh, S. K., De, R., Sharma, R., Maheshwari, A., Joshi, B. D., Sharma, D., Sathyakumar, S., Habib, B., Goyal, S. P. pdf 
  Title Conservation importance of the strategic, centrally located snow leopard population in the western Himalayas, India: a genetic perspective Type Journal Article
  Year 2022 Publication Mammalian Biology Abbreviated Journal  
  Volume Issue Pages 13  
  Keywords Panthera uncia, Western Himalayas, Microsatellite, Genetic diversity, Functional connectivity  
  Abstract The snow leopard population in Union Territory of Ladakh (UTL), India is at the centre of five out of eight mountain ranges within the species' habitat in the high-mountain Asia. Its strategic location is of immense conservation significance to maintain genetic connectivity and metapopulation dynamics of snow leopards (Panthera uncia). Therefore, we provide the first estimates of the snow leopard's individual-based spatial genetic characteristics from UTL. Multi-locus genotyping (n = 14 loci) of individuals (n = 19) revealed moderate genetic diversity in the population (mean number of alleles = 5.86 ± 0.55, observed heterozygosity = 0.48 ± 0.05, expected heterozygosity = 0.65 ± 0.03, allelic richness = 2.65 ± 0.15). We did not observe any evidence of population structuring (using STRUCTURE and Factorial Correspondence Analysis) or isolation by distance. However, the clustering approach based on genetic distance (Nei's standard distance and Cavalli-Sforza and Edwards distance) and subsequent discriminant analysis of principal components (DAPC) revealed three sub-clusters of related individuals within the study population without any spatial correlates. We observed 1.2% first-order relatives, suggesting sufficient dispersal and panmixia in the UTL population. We observed high fixation index (FIS = 0.26 ± 0.05; 0.17 ± 0.03 upon removing loci with null alleles) and presence of individuals from genetically divergent populations in UTL. Hence, the high positive FIS value could be attributed to both Wahlund effect and inbreeding. Prioritization and effective conservation planning of the UTL population as a source would benefit the global snow leopard population by (i) maintaining connectivity between the Himalayas and the central Asian mountain ranges, and (ii) providing refuge during future climate change-related range contraction.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1694  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: