Home | << 1 2 3 >> |
![]() |
Jackson, R., Hunter, D.O. (1995). Snow leopard Survey and conservation handbook (First edition).
Abstract: The objectives of this handbook (First edition) are to provide standard procedures for conducting snow leopard status and distribution surveys; suggest uniform methods for assessing the status and relative abundance of large prey species (ungulates such as blue sheep, argali, markhor, Himalayan tahr, urial, ibex, red deer, and roe deer); offer guidance in evaluating habitat quality and identifying the major environmental factors affecting species welfare; and provide standard forms for reporting the results of these field surveys, and a process for feeding information developed by the International Snow Leopard Trust into Snoe Leopard Information Management System (SLIMS).
|
Krofel, M., Oliveira, T., Rovero, F., Groff, C., Augugliaro, C., Oberosler, V., Allen, M. L. (2025). Communication behavior of the snow leopard (Panthera uncia): understanding marking-behavior patterns to optimize camera- trapping studies. Behavioral Ecology and Sociobiology, 79(32), 1–13.
Abstract: Many carnivores rely on marking behavior for intraspecific communication with potential mates and competitors, using scent and visual markings to advertise their use of a territory and allow potential mates to assess their quality. However, obtaining data on communication behaviors of rare and elusive animals can be challenging. To better understand marking behavior of snow leopard (Panthera uncia), we combined camera-trapping, snow-tracking and transect counts of scrapes in the Altai Mountains, Mongolia, and measured frequencies of communication behaviors in both space and time. Next, we explored if this information could be used to improve the efficiency of snow leopard population monitoring through camera-trapping. Using the combination of all three methods, we detected seven communication behaviors. Most visits at marking sites began with sniffing (recorded at 56.4% visits) before progressing to other behaviors. Urine spraying
(17.7% of visits) and scraping (16.8%) were exhibited at significantly more visits than other communication behaviors (flehmen, head/body rubbing, fecal deposition, claw marking). According to the snow-tracking data conducted in optimal habitats, scraping was the most frequent marking behavior with 12.8 scrapes/km, followed by urine marking with 10.5 marks/km. Along 32 transects, we recorded a mean of 8.0 cumulative scrapes/km, with highest marking rates recorded in gorges, which we recommend as prime habitats for deploying camera-traps. Finally, our results suggest that the number of scrapes observed at potential camera-trapping sites represents a good predictor of snow leopard visitation rate. Therefore, this parameter can be used when choosing camera-trapping locations to increase the efficiency of monitoring programs. |
Rode, J., Cabanat, A., Pelletier, A., Kaerle, C., Pirog, A., Dufaure de Citres, C., Queney, G., Chaix, B., Vereshagin, A., Casane, D. (2024). Monitoring of snow leopards in the Sarychat- Ertash State Reserve (Kyrgyzstan), between 2011 and 2019, through scat genotyping. SL Reports, 3, 21–36.
Abstract: Snow leopards (Panthera uncia) are a keystone species of Asia’s high mountain ecosystem. The species is assessed as Vulnerable by the IUCN Red List of Threatened Species and is elusive, limiting accurate population assessments that could inform conservation actions. Non-invasive genetic monitoring conducted by citizen scientists offers avenues to provide key data on this species. From 2011 to 2019, OSI-Panthera citizen science expeditions tracked signs of presence of snow leopards and collected scat samples along transects in the main valleys and crests of the Sarychat-Ertash State Reserve (Kyrgyzstan). Scat samples were genotyped at twenty autosomal microsatellite loci and at a X/Y locus (sex identification), allowing an estimation of a minimum of 17 individuals. The genetic recapture of 12 of them provided indications of individuals’ habitat use throughout the reserve. We found putative family relationships between several individuals; however, further research is needed to validate these findings. Our results demonstrate the potential of a citizen science program to collect meaningful data that can inform the conservation management of snow leopards.
|
Sharkey, W., Milner-Gulland, E. J., Sinovas, P., Keane, A. (2024). A framework for understanding the contributions of local residents to protected area law enforcement. Oryx, , 1–13.
Abstract: Terrestrial and marine protected areas have long been championed as an approach to biodiversity conservation. For protected areas to be effective, equitable and inclusive, the involvement of local residents in their management and governance is considered important. Globally, there are many approaches to involving local residents in protected area law enforcement. However, opportunities for comparing different approaches have been limited by the lack of a clear common framework for analysis. To support a more holistic understanding, we present a framework for analysing the contributions of local residents to protected area law enforcement. Informed by a review of the literature and discussions with conservation practitioners, the framework comprises five key dimensions: (1) the different points in the enforcement system at which local residents are involved, (2) the nature of local participation in decision-making, (3) the type of external support provided to local residents, (4) the different motivating forces for participation, and (5) the extent to which local participation is formalized. We apply the framework to three real-world case studies to demonstrate its use in analysing and comparing the characteristics of different approaches. We suggest this framework could be used to examine variation in local participation within the enforcement system, inform evaluation and frame constructive discussions between relevant stakeholders. With the global coverage of protected areas likely to increase, the framework provides a foundation for better understanding the contributions of local residents to protected area law enforcement.
|
Rode, J., Pelletier, A., Fumey, J., Rode, S., Cabanat, A. L., Ouvrard, A., Chaix, B., White, B., Harnden, M., Xuan, N. T., Vereshagin, A., Casane, D. (2020). Diachronic monitoring of snow leopards at Sarychat-Ertash State Reserve (Kyrgyzstan) through scat genotyping: a pilot study. bioRxiv, , 1–21.
Abstract: Snow leopards (Panthera uncia) are a keystone species of Central Asia’s high mountain ecosystem. The species is listed as vulnerable and is elusive, preventing accurate population assessments that could inform conservation actions. Non-invasive genetic monitoring conducted by citizen scientists offers avenues to provide key data on this species that would otherwise be inaccessible. From 2011 to 2015, OSI-Panthera citizen science expeditions tracked signs of presence of snow leopards along transects in the main valleys and crests of the Sarychat-Ertash State Reserve (Kyrgyzstan). Scat samples were genotyped at seven autosomal microsatellite loci and at a X/Y locus for sex identification, which allowed estimating a minimum of 11 individuals present in the reserve from 2011 to 2015. The genetic recapture of 7 of these individuals enabled diachronic monitoring, providing indications of individuals’ movements throughout the reserve. We found putative family relationships between several individuals. Our results demonstrate the potential of this citizen science program to get a precise description of a snow leopard population through time.
|
Suryawanshi, K. R., Khanyari, M., Sharma, K., Lkhagvajav, P., Mishra, C. (2019). Sampling bias in snow leopard population estimation studies. Population Eccology, , 1–9.
Abstract: Accurate assessments of the status of threatened species and their conservation
planning require reliable estimation of their global populations and robust monitoring of local population trends. We assessed the adequacy and suitability of studies in reliably estimating the global snow leopard (Panthera uncia) population. We compiled a dataset of all the peer-reviewed published literature on snow leopard population estimation. Metadata analysis showed estimates of snow leopard density to be a negative exponential function of area, suggesting that study areas have generally been too small for accurate density estimation, and sampling has often been biased towards the best habitats. Published studies are restricted to six of the 12 range countries, covering only 0.3�0.9% of the presumed global range of the species. Re-sampling of camera trap data from a relatively large study site (c.1684 km2) showed that small-sized study areas together with a bias towards good quality habitats in existing studies may have overestimated densities by up to five times. We conclude that current information is biased and inadequate for generating a reliable global population estimate of snow leopards. To develop a rigorous and useful baseline and to avoid pitfalls, there is an urgent need for (a) refinement of sampling and analytical protocols for population estimation of snow leopards (b) agreement and coordinated use of standardized sampling protocols amongst researchers and governments across the range, and (c) sampling larger and under-represented areas of the snow leopard's global range. |
Kashkarov, E. (2017). THE SNOW LEOPARD OF KIRGIZIA: NATIONAL SHAME OR NATIONAL PRIDE.239–253.
Abstract: Article examines the problems existing in conservation of the snow leopard in Kirgizia after break-up of the
USSR. Unfortunate situation is common to most of the 14 countries in the snow leopard range, but seems especially sharp to Kirgizia. Yet half of the century ago Kirgizia has had about 1.5 thousand of the snow leopards, and today there remains no more than 1/10. In Soviet time Kirgizia was a global supplier of the snow leopards for the zoo-export � to create a reserve number of endangered cats in captivity. Today, at least half of the snow leopards in the Zoos of the world are individuals, caught in Kirgizia or their descendants. Since independence, Kirgizia has set new records. In Sarychat-Irtash reserve � the best for the snow leopard in Central Asia, and probably in the whole range � this species was completely destroyed after 3 years of reserve opening... and 17 years later � revived... Situation comes presently back to the worst-case scenario, and not only for the snow leopard. Author shows how work in this direction social and economic levers, and what kind future he would like to see in Kirgizia, where he lived for 12 years and was at the forefront of pioneering research of the snow leopard and its conservation. |
Alexander, S., A., Zhang, C., Shi, K., Riordan, P. (2016). A granular view of a snow leopard population using camera traps in Central China. Biological Conservation, (197), 27–31.
Abstract: Successful conservation of the endangered snow leopard (Panthera uncia) relies on the effectiveness of monitoring programmes. We present the results of a 19-month camera trap survey effort, conducted as part of a longterm study of the snow leopard population in Qilianshan National Nature Reserve of Gansu Province, China. Weassessed the minimumnumber of individual snowleopards and population density across different sampling periods using spatial capture–recapture methods. Between 2013–2014, we deployed 34 camera traps across an area of 375 km2, investing a total of 7133 trap-days effort. Weidentified a total number of 17–19 unique individuals
from photographs (10–12 adults, five sub-adults and two cubs). The total number of individuals identified and estimated density varied across sampling periods, between 10–15 individuals and 1.46–3.29 snow leopards per 100 km2 respectively. We demonstrate that snow leopard surveys of limited scale and conducted over short sampling periods only present partial views of a dynamic and transient system.We also underline the challenges in achieving a sufficient sample size of captures and recaptures to assess trends in snow leopard population size and/or density for policy and conservation decision-making |
Johansson, T., A. Johansson, Orjan. McCarthy, Tom. (2011). An Automatic VHF Transmitter Monitoring System for Wildlife Research. Wildlife Society Bulletin, 9999, 1–5.
Abstract: We describe an automated system for monitoring multiple very high frequency (VHF) transmitters, which are commonly employed in wildlife studies. The system consists of a microprocessor-controlled radio-frequency monitor equipped with advanced signal-processing capabilities that communicates with, and relays information to, a user interface unit at a different location. the system was designed for a capture-and-release snow leopard (Panthera uncia) study in Mongolia, where checking trap-site transmitters manually entailed climbing a hill with telemetry equipment several times each day and night. Here, it monitors the trap-site transmitters and actively produces an alarm when any of the traps have been triggered, or if the system has lost contact with any trap-transmitter. The automated system allowed us to constantly monitor transmitters from a research camp, and alerted us each time a trap was triggered. The system has been field-tested for 83 days from mid-September 2010 to mid-december 2010 in the Tost mountain range on the edge of Mongolia's Gobi desert. During this time, the system performed reliably, responding correctly to 45 manually generated alarms and 9 animal captures. The system considerably shortens the time the captured animals spend in traps, and also mitigates the need for manual trap-site transmitter monitoring, greatly reducing risk to the animal and the human effort involved.
|
Karanth, K. U., Nichols, J.D., Seidensticker, J., Dinerstein, E., David Smith, J.L., McDougal, C., Johnsingh, A.J.T., Chundawat, R.S., Thapar, V. (2003). Science deficiency in conservation practice: the monitoring of tiger populations in India. Animal Conservation, 6, 141–146.
Abstract: Conservation practices are supposed to get refined by advancing scientific knowledge. We study this phenomenon in the context of monitoring tiger populations in India, by evaluating the ‘pugmark census method’ employed by wildlife managers for three decades. We use an analytical framework of modern animal population sampling to test the efficacy of the pugmark censuses using scientific data on tigers and our field observations. We identify three critical goals for monitoring tiger populations, in order of increasing sophistication: (1) distribution mapping, (2) tracking relative abundance, (3) estimation of absolute abundance. We demonstrate that the present census-based paradigm does not work because it ignores the first two simpler goals, and targets, but fails to achieve, the most difficult third goal. We point out the utility and ready availability of alternative monitoring paradigms that deal with the central problems of spatial sampling and observability. We propose an alternative sampling-based approach that can be tailored to meet practical needs of tiger monitoring at different levels of refinement.
|