Durbach, I., Borchers, D., Sutherland, C., Sharma, K. (2020). Fast, flexible alternatives to regular grid designs for spatial
capture–recapture..
Abstract: Spatial capture–recapture (SCR) methods use the location of
detectors (camera traps, hair snares and live-capture traps) and the
locations at which animals were detected (their spatial capture
histories) to estimate animal density. Despite the often large expense
and effort involved in placing detectors in a landscape, there has been
relatively little work on how detectors should be located. A natural
criterion is to place traps so as to maximize the precision of density
estimators, but the lack of a closed-form expression for precision has
made optimizing this criterion computationally demanding. 2. Recent
results by Efford and Boulanger (2019) show that precision can be well
approximated by a function of the expected number of detected
individuals and expected number of recapture events, both of which can
be evaluated at low computational cost. We use these results to develop
a method for obtaining survey designs that optimize this approximate
precision for SCR studies using count or binary proximity detectors, or
multi-catch traps. 3. We show how the basic design protocol can be
extended to incorporate spatially varying distributions of activity
centres and animal detectability. We illustrate our approach by
simulating from a camera trap study of snow leopards in Mongolia and
comparing estimates from our designs to those generated by regular or
optimized grid designs. Optimizing detector placement increased the
number of detected individuals and recaptures, but this did not always
lead to more precise density estimators due to less precise estimation
of the effective sampling area. In most cases, the precision of density
estimators was comparable to that obtained with grid designs, with
improvement in some scenarios where approximate CV(¬D) < 20% and density
varied spatially. 4. Designs generated using our approach are
transparent and statistically grounded. They can be produced for survey
regions of any shape, adapt to known information about animal density
and detectability, and are potentially easier and less costly to
implement. We recommend their use as good, flexible candidate designs
for SCR surveys when reasonable knowledge of model parameters exists. We
provide software for researchers to construct their own designs, in the
form of updates to design functions in the r package oSCR.
|
Korablev, M. P., Poyarkov, A. D., Karnaukhov, A. S., Zvychaynaya, E. Y., Kuksin, A. N., Malykh, S. V., Istomov, S. V., Spitsyn, S. V., Aleksandrov, D. Y., Hernandez-Blanco, J. A., Munkhtsog, B., Munkhtogtokh, O., Putintsev, N. I., Vereshchagin, A. S., Becmurody, A., Afzunov, S., Rozhnov, V. V. (2021). Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. Conservation Genetics, .
Abstract: The snow leopard (Panthera uncia Schreber, 1776) population in Russia and Mongolia is situated at the northern edge of the range, where instability of ecological conditions and of prey availability may serve as prerequisites for demographic instability and, consequently, for reducing the genetic diversity. Moreover, this northern area of the species distribution is connected with the western and central parts by only a few small fragments of potential habitats in the Tian-Shan spurs in China and Kazakhstan. Given this structure of the range, the restriction of gene flow between the northern and other regions of snow leopard distribution can be expected. Under these conditions, data on population genetics would be extremely important for assessment of genetic diversity, population structure and gene flow both at regional and large-scale level. To investigate large-scale and fine-grain population structure and levels of genetic diversity we analyzed 108 snow leopards identified from noninvasively collected scat samples from Russia and Mongolia (the northern part of the range) as well as from Kyrgyzstan and Tajikistan (the western part of the range) using panel of eight polymorphic microsatellites. We found low to moderate levels of genetic diversity in the studied populations. Among local habitats, the highest heterozygosity and allelic richness were recorded in Kyrgyzstan (He = 0.66 ± 0.03, Ho = 0.70 ± 0.04, Ar = 3.17) whereas the lowest diversity was found in a periphery subpopulation in Buryatia Republic of Russia (He = 0.41 ± 0.12, Ho = 0.29 ± 0.05, Ar = 2.33). In general, snow leopards from the western range exhibit greater genetic diversity (He = 0.68 ± 0.04, Ho = 0.66 ± 0.03, Ar = 4.95) compared to those from the northern range (He = 0.60 ± 0.06, Ho = 0.49 ± 0.02, Ar = 4.45). In addition, we have identified signs of fragmentation in the northern habitat, which have led to significant genetic divergence between subpopulations in Russia. Multiple analyses of genetic structure support considerable genetic differentiation between the northern and western range parts, which may testify to subspecies subdivision of snow leopards from these regions. The observed patterns of genetic structure are evidence for delineation of several management units within the studied populations, requiring individual approaches for conservation initiatives, particularly related to translocation events. The causes for the revealed patterns of genetic structure and levels of genetic diversity are discussed.
|
Ming, M., Baowen, H., Yu, M., & McCarthy, T. (2010). Survey on Bird Species and Analysis on Bird Diversity in the Central Kunlun Mountains in the Early Winter. Arid Zone Research, 27(2), 227–232.
|
Ming, M., Chundawat R.S., Jumabay, K., Wu, Y., Aizeizi, Q., & Zhu, M. H. (2006). Camera trapping of snow leopards for the photo capture rate and population size in the Muzat Valley of Tianshan Mountains. Acta Theriologica Sinica, 52(4), 788–793.
Abstract: The main purpose of this work was to study the use of infrared trapping cameras to estimate snow leopard Uncia uncia population size in a specific study area. This is the first time a study of this nature has taken place in China. During 71 days of field work, a total of 36 cameras were set up in five different small vales of the Muzat Valley adjacent to the Tomur Nature Reserve in Xinjiang Province, E80ø35' – 81ø00' and N42ø00' – 42ø10', elevation 2'300 – 3'000 m, from 18th October to 27th December 2005. We expended approximately 2094 trap days and nights total (c. 50'256 hours). At least 32 pictures of snow leopards, 22 pictures of other wild species (e.g. chukor, wild pig, ibex, red fox, cape hare) and 72 pictures of livestock were taken by the passive Cam Trakker (CT) train monitor in about 16 points of the Muzat Valley. The movement distance of snow leopard was 3-10 km/day. And the capture rate or photographic rate of snow leopard was 1.53%. Meanwhile, 20 transects were run and 31 feces sample were collected. According to 32 photos, photographic rate and sign survey after snowing on the spot, were about 5-8 individuals of snow leopards in the research area, and the minimum density of snow leopard in Muzat Valley was 2.0 – 3.2 individuals/100 km2. We observed the behavior of ibex for 77.3 hours, and found about 20 groups and a total of approximately 264 ibexes in the research area.
|
Ming, M., Yun, G., & Bo, W. (2008). Man & the Biosphere: The special series for the conservation of Snow Leopards in China (Vol. 54).
Abstract: The Chinese magazine <Man & the Biosphere> (Series No. 54, No. 6, 2008) -- A special series for the conservation of Snow Leopards was published by the Chinese National Committee for Man & the Biosphere in 15th December 2008. It is about 80 pages including ten articles with 200 color pictures. The special editors of this issue are the experts from SLT/XCF Prof. MaMing, Mrs. Ge Yun and Mr. Wen Bo. The first paper is “A King of Snow Peaks, Another Endangered Flagship Species” by Dr. Thomas McCarthy, Dr. Urs Breitenmmoser and Dr. Christine Breitenmoser-Wursten (Page 1-1). Another paper “ Conservation : Turning Awareness to Action ” is also from Dr. Thomas McCarthy (Pages from 6-17). There are four articles including the diary and story of the Surveys in Tomur Mountain and Kunlun Mountains written by Prof. MaMing, Mr. XuFeng, Miss Chen Ying and Miss Cheng Yun from the Xinjiang Snow Leopard Group and XCF, the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences. The last is “Snow Leopard Enterprises ” -- A Story from Mongolia by Mrs. Jennifer Snell Rullman and Mrs. Agvaantseren Bayarjargal (Bayara). It is a very useful copy for the conservation in China. Cited as:
Ma Ming, GeYun and WenBo (Special editors of this issue). 2008. The special series for the conservation of Snow Leopards in China. Man & the Biosphere 2008(6): 1-80. Contents 1, A king of snow peaks, another endangered flagship species (Synopsis) ------------- 1-1 The contents --------------------------------------------- ( pages from 2-3 )
2, Protecting Snow Leopard means protecting a healthy eco-systems -------------- 4-5
3, Conservation: Turning awareness into action -------------- 6-17
4, Chinese Snow Leopard Team goes into action -------------- 18-25
5, A diary of infrared photography -------------- 26-35
6, Why have the snow leopards in the Tianshan Mountains begun to attack livestock? --- 36-43
7, The mystery of the Snow Leopards coming down the Tianshan Mountains ----------- 44-45
8, Snow leopards secluded Home on the Plateau ------------- 46-59
9, He saw Snow Leopards 30 years ago ------------- 60-69
10, Snow Leopard Enterprises -- A story from Mongolia ------------- 70-80
|
Fox, J. L. (1989). A review of the status and ecology of the snow leopard (Panthera uncia).
|
International Snow Leopard Trust. (2000). Snow Leopard News Spring 2000. Seattle, Wa: Islt.
|
Qiseng, Y. (1994). Further Study on the Geographical Distribution and Conservation of Snow Leopard in Qinghai, China. In J.L.Fox, & D.Jizeng (Eds.), (pp. 73–78). Usa: Islt.
|
Schaller, G. (1986). Surveys of Mountain Wildlife in China, Report # 4.
|
Schaller, G. (1987). Surveys of Mountain Wildlife in China, Report # 6.
|