|
Robinson, J. J., Crichlow, A. D., Hacker, C. E., Munkhtsog, B., Munkhtsog, B., Zhang, Y., Swanson, W. F., Lyons, L. A., Janecka, J. E. (2024). Genetic Variation in the Pallas’s Cat (Otocolobus manul) in Zoo-Managed and Wild Populations. Diversity, 16(228), 1–13.
Abstract: The Pallas’s cat (Otocolobus manul) is one of the most understudied taxa in the Felidae family. The species is currently assessed as being of “Least Concern” in the IUCN Red List, but this assessment is based on incomplete data. Additional ecological and genetic information is necessary for the long-term in situ and ex situ conservation of this species. We identified 29 microsatellite loci with sufficient diversity to enable studies into the individual identification, population structure, and phylogeography of Pallas’s cats. These microsatellites were genotyped on six wild Pallas’s cats from the Tibet Autonomous Region and Mongolia and ten cats from a United States zoo-managed population that originated in Russia and Mongolia. Additionally, we examined diversity in a 91 bp segment of the mitochondrial 12S ribosomal RNA (MT-RNR1) locus and a hypoxia-related gene, endothelial PAS domain protein 1 (EPAS1). Based on the microsatellite and MT-RNR1 loci, we established that the Pallas’s cat displays moderate genetic diversity. Intriguingly, we found that the Pallas’s cats had one unique nonsynonymous substitution in EPAS1 not present in snow leopards (Panthera uncia) or domestic cats (Felis catus). The analysis of the zoo-managed population indicated reduced genetic diversity compared to wild individuals. The genetic information from this study is a valuable resource for future research into and the conservation of the Pallas’s cat.
|
|
|
Sanyal, O., Bashir, T., Rana, M., Chandan, P. (2023). First photographic record of the snow leopard Panthera uncia in Kishtwar High Altitude National Park, Jammu and Kashmir, India. Oryx, , 1–5.
Abstract: The snow leopard Panthera uncia is categorized as Vulnerable on the IUCN Red List. It is the least well-known of the large felids because of its shy and elusive nature and the inaccessible terrain it inhabits across the mountains of Central and South Asia. We report the first photographic record of the snow leopard in Kishtwar High Altitude National Park, India. During our camera-trapping surveys, conducted using a grid-based design, we obtained eight photographs of snow leopards, the first at 3,280 m altitude on 19 September 2022 and subsequent photographs over 3,004-3,878 m altitude. We identified at least four different individuals, establishing the species’ occurrence in Kiyar, Nanth and Renai catchments, with a capture rate of 0.123 ± SE 0.072 captures/100 trap-nights. ghts. We also recorded the presence of snow leopard prey species, including the Siberian ibex Capra sibirica, Himalayan musk deer Moschus leucogaster, long-tailed marmot Marmota caudata and pika Ochotona sp., identifying the area as potential snow leopard habitat. Given the location of Kishtwar High Altitude National Park, this record is significant for the overall snow leopard conservation landscape in India. We recommend a comprehensive study across the Kishtwar landscape to assess the occupancy, abundance, demography and movement patterns of the snow leopard and its prey. In addition, interactions between the snow leopard and pastoral communities should be assessed to understand the challenges facing the conservation and management of this important high-altitude region.
|
|
|
Ismaili, R. R. R., Peng, X., Li., Y, Ali, A., Ahmad, T., Rahman, A. U., Ahmad, S., Shi, K. (2024). Modeling Habitat Suitability of Snow Leopards in Yanchiwan National Reserve, China. Animals, 14(1938), 1–21.
Abstract: Snow leopards (Panthera uncia) are elusive predators inhabiting high-altitude and mountainous rugged habitats. The current study was conducted in the Yanchiwan National Nature Reserve, Gansu Province, China, to assess the habitat suitability of snow leopards and identify key environmental factors inducing their distribution. Field data collected between 2019 and 2022 through scat sampling and camera trapping techniques provided insights into snow leopard habitat preferences. Spatial distribution and cluster analyses show distinct hotspots of high habitat suitability, mostly concentrated near mountainous landscapes. While altitude remains a critical determinant, with places above 3300 m showing increased habitat suitability, other factors such as soil type, human footprint, forest cover, prey availability, and human disturbance also play important roles. These variables influence ecological dynamics and are required to assess and manage snow leopard habitats. The MaxEnt model has helped us to better grasp these issues, particularly the enormous impact of human activities on habitat suitability. The current study highlights the importance of altitude in determining snow leopard habitat preferences and distribution patterns in the reserve. Furthermore, the study underscores the significance of considering elevation in conservation planning and management strategies for snow leopards, particularly in mountainous regions. By combining complete environmental data with innovative modeling tools, this study not only improves local conservation efforts but also serves as a model for similar wildlife conservation initiatives around the world. By understanding the environmental factors driving snow leopard distribution, conservation efforts can be more efficiently directed to ensure the long-term survival of this endangered species. This study provides valuable insights for evidence-based conservation efforts to safeguard the habitats of snow leopards amidst emerging anthropogenic pressure and environmental fluctuations.
|
|
|
Pathak, A., Lamichhane, S., Dhakal, M., Karki, A., Dhakal, B. D., Chetri, M., Mintz, J., Pun, P., Neupane, P., Dahal, T. P., Rayamajhi, T., Paudel, P., Thapa, A., Regmi, P. R., Thami, S., Thapa, G., Khanal, S., Lama, S., Karki, J., Khanal, S., Ferdin, A. E. J. (2024). Human-wildlife conflict at high altitude: A case from Gaurishankar conservation area, Nepal. Ecology and Evolution, 14(e11685), 1–9.
Abstract: Human–wildlife conflict studies of high-altitude areas are rare due to budget constraints and the challenging nature of research in these remote environments. This study investigates the prevalence and increasing trend of human–wildlife conflict (HWC) in the mountainous Gaurishankar Conservation Area (GCA) of Nepal, with a specific focus on leopard (Panthera pardus) and Himalayan black bear (Ursus thibetanus laniger). The study analyzes a decade of HWC reports and identifies goats as the livestock most targeted by leopards. The Dolakha district of GCA received the highest number of reports, highlighting the need for mitigation measures in the area. In GCA, livestock attacks accounted for 85% of compensation, with the remaining 15% for human injuries. We estimate that the number of reported wildlife attacks grew on average by 33% per year, with an additional increase of 57 reports per year following the implementation of a new compensation policy during BS 2076 (2019 AD). While bear attacks showed no significant change post-rule alteration, leopard attack reports surged from 1 to 60 annually, indicating improved compensation may have resulted in increased leopard-attack reporting rates. The findings emphasize the economic impact of HWC on local communities and suggest strategies such as increasing prey populations, promoting community education and awareness, enhancing alternative livelihood options, developing community-based insurance programs, and implementing secure enclosures (corrals) to minimize conflicts and foster harmonious coexistence. This research addresses a knowledge gap in HWC in high- altitude conservation areas like the GCA, providing valuable insights for conservation stakeholders and contributing to biodiversity conservation and the well-being of humans and wildlife.
|
|
|
Jackson, M. R., Munkhtsog, B., Munkhtsog, B., Hunter, B., Rice, D., Hunter, D. O. (2024). Harnessing Drones for Snow Leopard Prey Surveys. SL Reports, 3, 1–8.
Abstract: Surveying snow leopard prey species such as argali, ibex or blue sheep through traditional ground-based observations is time-consuming, expensive, and challenging. Aerial drones present a promising alternative. We tested using thermal-sensor- equipped drones to count ungulate populations in Mongolia’s Ikh Nart Nature Reserve, surveying ~400km of transects along five fixed routes for forty-three missions. Drones detected 235 prey animals and 209 livestock; 26% of all sightings were in areas that would not have been visible to hypothetical ground-based observers. Our tests reinforced the utility of drones for counting snow leopard prey and highlighted important issues and future advances for supporting largely autonomous prey surveys. We recommend biologists build upon existing technology to attain an inexpensive, easy to use, and field ready set of equipment and procedures that can reliably improve or replace traditional transect or point count methods for large prey species.
|
|
|
Mueen, Q. H., Thuktan, T., Khanyari, M., Khaleel, M. (2024). Camera trapping survey for snow leopard provides first photographic record of Woolly Flying Squirrel from Kishtwar Himalayas, India. SL Reports, 3, 9–12.
Abstract: The Woolly Flying Squirrel (Eupetaurus cinereus), considered native to Northern Pakistan and North- Western Himalaya has remained an elusive species because of its presence in high mountain rocky cliffs near the tree line. These montane habitats have remained inaccessible for research thus making it difficult to study their distribution. Here, we present the first photographic evidence of the Woolly Flying Squirrel from the Kishtwar region of Jammu and Kashmir obtained from camera-traps placed to detect snow leopard presence and distribution. This record adds valuable presence information to the existing distribution range of the species from the North-Western Himalaya.
|
|
|
Khanyari, M., Sanyal, O., Chandan, P., Bajaj, D., Sharma, C., Rana, M., Sharma, N., Bashir, T., Suryawanshi, K. (2024). A new dawn? Population baselines of snow leopards and other mammals of the Kishtwar High Altitude National Park, India. Integrative Conservation, , 1–10.
Abstract: Accurately assessing the status of threatened species requires reliable population estimates. Despite this necessity, only a small proportion of the global distribution range of the vulnerable snow leopard (Panthera uncia) has been systematically sampled. The Indian section of the Greater Himalayas, which includes Kishtwar High Altitude National Park (KHANP), harbours potential snow leopard habitat. Nevertheless, there has been limited ecological and conservation research focusing on species that are specific to KHANP, as well as limited research on the broader biodiversity of the Greater Himalayas. We used Spatially Explicit Capture‐Recapture (SECR) models to provide—to our knowledge—the first robust snow leopard population density and abundance estimates from KHANP. We also provide a Relative Abundance Index (RAI) for non‐volant mammals (excluding small rodents). Our study sampled three catchments within the Dachhan region of KHANP—Kibber, Nanth and Kiyar—using 44 cameras over a 45‐day period between May and June 2023. We identified four unique snow leopard individuals across 15 detections in nine camera locations. SECR analysis estimated a density of 0.50 snow leopards per 100 km2 (95% confidence interval: 0.13–1.86), corresponding to an abundance of four individual (4–9) adults. Camera trapping revealed a total of 16 mammal species, including the endangered Kashmir musk deer (Moschus cupreus). Marmots (Marmota caudata) had the highest RAI of 21.3 (±0.2). Although the estimated density and abundance of snow leopards in our study area had relatively wide 95% confidence intervals, our combined results of snow leopard densities and RAIs of prey species such as ibex and marmots indicate that KHANP is a potentially important area for snow leopards. Given the geopolitical history of Jammu and Kashmir in India, the region where KHANP is located, wildlife research remains a low priority. We hope our study encourages authorities to support further research. This study is an initial step towards evaluating the potential of KHANP as a conservation landscape under the Government of India's Project Snow Leopard.
|
|
|
Gautam, P. (2024). Wild Cats of Nepal. Booklet, .
Abstract: Foreward – Nepal’s rich biodiversity owes to the fact that from 80m elevation of Birgunj (Terai) to 8850m of Sagarmatha all belongs to mere 200km strip of land. Thus within the belt lies all five biodiversity zones : Tropics, Subtropics, Temperate, Subalpine and Alpine. And the 13 cat species included in this book occupy all the zones, from Tigers in Tropics (below 1000m) to Snow Leopards in Alpine (above 5000m).
|
|
|
Nyam, E., Alexander, J. S., Byambasuren, C., Johansson, O., Samelius, G., Lkhagvajav, P. (2024). Snow leopard digging for water in an arid environment. SL Reports, 3, 37–40.
Abstract: Adaptations to arid environments, involving strategies to conserve and utilize water, are vital for wildlife. Water availability in these regions depends on seasonal rainfall, and subsequently affect species distribution and behavior. This note documents a snow leopard (Panthera uncia) in the Tost Mountains of southern Mongolia digging for water, a previously undocumented behavior. The first author identified evidence of snow leopards digging for water. Camera traps were then used in an attempt to document this behavior. Unique pelt patterns identified one snow leopard digging for water in the summer of 2022, with drinking observed. Other species also drank at the site, suggesting snow leopards could act as ecological engineers by providing water for other species. Four other snow leopards were observed to visit the site in the late fall, winter, and early spring of 2022 and 2023. These snow leopards did not dig or drink, but this may largely have been related to subzero temperatures (-15°C to -30°C) and the ground being frozen for most of this period. The snow leopard digging for and exposing water may help to support biodiversity in desert ecosystems. However, further research is needed to determine its prevalence and impact. Understanding these strategies is crucial for conservation, especially with increasing droughts and extreme weather in arid landscapes.
|
|
|
Dorji, R., Letro, L., Yangden, S., Dendup, P., Dhendup, T. Lhamo, Y. (2024). Rare and unusual snow leopard encounters in the broadleaf forest of the Bhutanese Himalayas. SL Reports, 3, 13–20.
Abstract: The snow leopard Panthera uncia, a top predator in Central and South Asia, faces population declines due to habitat degradation, prey depletion, retaliatory killings, poaching, and climate change. In Bhutan, where the species is protected, we report two rare sightings in the Gedu regionʼs broadleaved and fir forests, at 2,708 masl and 3,839 masl, respectively, which are lower than the typical speciesʼ prime habitats in Bhutan. These findings suggest that this area may function as an important corridor or a potential range expansion beyond typical high-altitude habitats (3,000 to 5,800 masl). This discovery underscores the speciesʼ ecological adaptability and highlights the need for enhanced conservation strategies, including habitat connectivity mapping and local community education. Additionally, it highlights the importance of protecting and conserving habitats outside of protected areas for speciesʼ long-term persistence.
|
|