|
Smith, G. (1992). Mongolia at the crossroads. Earth Island Journal, 7(4), 1.
Abstract: Abstract: Assesses foreign investment laws adopted by the government of Mongolia which have been deemed extremely flexible and favorable for Americans. Economic benefits presented by the big game hunt industry; Consultation with Secretary of State James Baker in the formulation of said laws during his July The Mongolian government is trying its best to make the country attractive to foreign investors. Big game hunts are still Mongolia's primary source of foreign cash. European and American hunters are willing to pay as much as $90,000 for rare game such as the ibex or the snow leopard. However, a recent US Fish and Wildlife Service ruling giving protection to the Argal, a wild sheep, could mean the cutting of cash inflows from foreign hunters.
|
|
|
Krumbiegel, V. I. (1936). Die schneeleoparden (Felis uncia Schreb.) des Dresdner Zoologischen Gartens. Dresdner Zoologischen Gartens, , 34–37.
|
|
|
Schneider, V. K. M. (1936). Einige bilder zur Aufzucht eines schneeleoparden. Dresden Zoological Garden, , 37–39.
|
|
|
Subbotin, A. E., & Istomov, S. V. (2009). The population status of snow leopards Uncia uncia (Felidae, Carnivora) in the western Sayan Mountain Ridge. Doklady Biologicl Sciences, 425, 183–186.
Abstract: The snow leopard (Uncia uncial Schreber, 1776) is the most poorly studied species of the cat family in the world and, in particular, in Russia, where the northern periphery of the species area (no more than 3% of it) is located in the Altai-Hangai-Sayan range [1]. It is generally known that the existing data on the Russian part of the snow leopard population have never been a result of targeted studies; at best, they have been based on recording the traces of the snow leopard vital activity [2]. This is explained by the snow leopard's elusive behavior, inaccessibility of its habitats for humans, and its naturally small total numbers in the entire species area. All published data on the population status of the snow leopard in Russia, from the first descriptions of the species [3-6] to the latest studies [7, 8] are subjective, often speculative, and are not confirmed by
quantitative estimates. It is obvious, however, that every accurate observation of this animal is of particular interest [9]. The purpose of our study was to determine the structure and size of the population group presumably inhabiting the Western Sayan mountain ridge at the northern boundary of the species area
|
|
|
Polking, V. F. (1996). Schneelleopard. Das Tier, , 8–15.
|
|
|
Gao, Y., Wang, Y., Lee, A. T. L., Liu, Y., Luo, Y., Orrick, K., Alexander, J. S., Sangpo, J. T., Clark, S. G. (2023). Contextualizing sociodemographic differences in Tibetan attitudes toward large carnivores. Conservation Science and Practice, (e13049), 1–15.
Abstract: Fostering human–wildlife coexistence necessitates a thorough and nuanced grasp of local attitudes toward wildlife. Attitudes can vary substantially based on the sociodemographic backgrounds of individuals within a society. This study examines Tibetan attitudes toward large carnivores, emphasizing the importance of contextualization in discerning the effects of sociodemographic factors on attitudes. We began by analyzing existing research on Tibetan attitudes toward wildlife in China, identifying previously studied sociodemo- graphic variables. We then executed an online survey to evaluate the affective, behavioral, cognitive, and overall attitudes of ethnic Tibetans in China toward snow leopards (Panthera uncia), gray wolves (Canis lupus), and brown bears (Ursus arctos). Our findings show that while factors such as gender, age, religious identity, and level of education shape these attitudes, their influence differs depending on the specific attitude component and the target animal under examination. Therefore, making broad generalizations about sociodemographic differences in attitudes can be misleading. It is imperative for attitude research to clearly define the attitude component (what type of attitude), object (attitude toward what), and circumstance (attitude in which situation) being studied. Conducting ethnographic fieldwork in collaboration with local cultural experts can deepen our understanding of local perspectives and the ways sociodemographic factors influence attitudes. Such insights are pivotal for developing conservation strategies attuned to local sociocultural contexts.
|
|
|
Arias, M., Coals, P., Ardiantiono, Elves-Powell, J., Rizzolo, J. B., Ghoddousi, A., Boron, V., da Silva, M., Naude, V., Williams, V., Poudel, S., Loveridge, A., Payan, E., Suryawanshi, K., Dickman, A. (2024). Reflecting on the role of human-felid conflict and local use in big cat trade. Conservation Science and Practice, 6(e13030), 1–7.
Abstract: Illegal trade in big cat (Panthera spp.) body parts is a prominent topic in scientific and public discourses concerning wildlife conservation. While illegal trade is generally acknowledged as a threat to big cat species, we suggest that two enabling factors have, to date, been under-considered. To that end, we discuss the roles of human-felid conflict, and “local” use in illegal trade in big cat body parts. Drawing examples from across species and regions, we look at generalities, contextual subtleties, ambiguities, and definitional complexities. We caution against underestimating the extent of “local” use of big cats and highlight the potential of conflict killings to supply body parts.
|
|
|
Korablev, M. P., Poyarkov, A. D., Karnaukhov, A. S., Zvychaynaya, E. Y., Kuksin, A. N., Malykh, S. V., Istomov, S. V., Spitsyn, S. V., Aleksandrov, D. Y., Hernandez-Blanco, J. A., Munkhtsog, B., Munkhtogtokh, O., Putintsev, N. I., Vereshchagin, A. S., Becmurody, A., Afzunov, S., Rozhnov, V. V. (2021). Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. Conservation Genetics, .
Abstract: The snow leopard (Panthera uncia Schreber, 1776) population in Russia and Mongolia is situated at the northern edge of the range, where instability of ecological conditions and of prey availability may serve as prerequisites for demographic instability and, consequently, for reducing the genetic diversity. Moreover, this northern area of the species distribution is connected with the western and central parts by only a few small fragments of potential habitats in the Tian-Shan spurs in China and Kazakhstan. Given this structure of the range, the restriction of gene flow between the northern and other regions of snow leopard distribution can be expected. Under these conditions, data on population genetics would be extremely important for assessment of genetic diversity, population structure and gene flow both at regional and large-scale level. To investigate large-scale and fine-grain population structure and levels of genetic diversity we analyzed 108 snow leopards identified from noninvasively collected scat samples from Russia and Mongolia (the northern part of the range) as well as from Kyrgyzstan and Tajikistan (the western part of the range) using panel of eight polymorphic microsatellites. We found low to moderate levels of genetic diversity in the studied populations. Among local habitats, the highest heterozygosity and allelic richness were recorded in Kyrgyzstan (He = 0.66 ± 0.03, Ho = 0.70 ± 0.04, Ar = 3.17) whereas the lowest diversity was found in a periphery subpopulation in Buryatia Republic of Russia (He = 0.41 ± 0.12, Ho = 0.29 ± 0.05, Ar = 2.33). In general, snow leopards from the western range exhibit greater genetic diversity (He = 0.68 ± 0.04, Ho = 0.66 ± 0.03, Ar = 4.95) compared to those from the northern range (He = 0.60 ± 0.06, Ho = 0.49 ± 0.02, Ar = 4.45). In addition, we have identified signs of fragmentation in the northern habitat, which have led to significant genetic divergence between subpopulations in Russia. Multiple analyses of genetic structure support considerable genetic differentiation between the northern and western range parts, which may testify to subspecies subdivision of snow leopards from these regions. The observed patterns of genetic structure are evidence for delineation of several management units within the studied populations, requiring individual approaches for conservation initiatives, particularly related to translocation events. The causes for the revealed patterns of genetic structure and levels of genetic diversity are discussed.
|
|
|
Janecka, J. E., Jackson, R., Munkhtsog, B., Murphy, W. J. (2014). Characterization of 9 microsatellites and primers in snow leopards and a species-specific PCR assay for identifying noninvasive samples. Conservation Genetic Resource, 6(2), 369:373.
Abstract: Molecular markers that can effectively identify noninvasively collected samples and provide genetic
information are critical for understanding the distribution, status, and ecology of snow leopards (Panthera uncia). However, the low DNA quantity and quality in many
noninvasive samples such as scats makes PCR amplification and genotyping challenging. We therefore designed primers for 9 microsatellites loci previously isolated in the
domestic cat (Felis catus) specifically for snow leopard studies using noninvasive samples. The loci showed moderate levels of variation in two Mongolian snow leopard
populations. Combined with seven other loci that we previously described, they have sufficient variation (He = 0.504, An = 3.6) for individual identification and
population structure analysis. We designed a species species specific PCR assay using cytochrome b for identification of unknown snow leopard samples. These molecular markers
facilitate in depth studies to assess distribution, abundance, population structure, and landscape connectivity of this endangered species.
endangered species
|
|
|
Janecka, J. E., Jackson, R., Munkhtsog, B., Murphy, W. J. (2014). Characterization of 9 microsatellites and primers in snow leopards and a species-specific PCR assay for identifying noninvasive samples. Conservation Genetic Resource, 6(2), 369:373.
Abstract: Molecular markers that can effectively identify noninvasively collected samples and provide genetic
information are critical for understanding the distribution, status, and ecology of snow leopards (Panthera uncia). However, the low DNA quantity and quality in many
noninvasive samples such as scats makes PCR amplification and genotyping challenging. We therefore designed primers for 9 microsatellites loci previously isolated in the
domestic cat (Felis catus) specifically for snow leopard studies using noninvasive samples. The loci showed moderate levels of variation in two Mongolian snow leopard
populations. Combined with seven other loci that we previously described, they have sufficient variation (He = 0.504, An = 3.6) for individual identification and
population structure analysis. We designed a species species specific PCR assay using cytochrome b for identification of unknown snow leopard samples. These molecular markers
facilitate in depth studies to assess distribution, abundance, population structure, and landscape connectivity of this endangered species.
|
|
|
Sharma, S., Thapa, K., Chalise, M., Dutta, T., Bhatnagar, Y.V., McCarthy, T. (2006). The snow leopard in Himalaya: A step towards their conservation by studying their distribution, marking habitat selection, coexistence with other predators, and wild prey-livestock-predator interaction. Conservation Biology in Asia, , 184–196.
Abstract: Snow leopard (Uncia uncial) is a flagship species of the Himalaya. Very few studies have been done on the ecology of this species in the Himalaya. This paper presents an overview of four studies conducted on snow leopards in Nepal and India, dealing with various aspects of snow leopard ecology including their status assessment, making behaviour, habitat selection, food habits, and impact on livestock. The information generated by these studies is useful in planning effective conservation and management strategies for this endangered top predator of high mountains.
|
|
|
Mishra, C., Allen, P., McCarthy, T., Madhusudan, M. D., Agvaantserengiin, B., & Prins H. (2003). The role of incentive programs in conserving the snow leopard (Vol. 17).
Abstract: Pastoralists and their livestock share much of the habitat of the snow leopard (Uncia uncia) across south and central Asia. The levels of livestock predation by the snow leopard and other carnivores are high, and retaliatory killing by the herders is a direct threat to carnivore populations. Depletion of wild prey by poaching and competition from livestock also poses an indirect threat to the region's carnivores. Conservationists working in these underdeveloped areas that face serious economic damage from livestock losses have turned to incentive programs to motivate local communities to protect carnivores. We describe a pilot incentive program in India that aims to offset losses due to livestock predation and to enhance wild prey density by creating livestock-free areas on common land. We also describe how income generation from handicrafts in Mongolia is helping curtail poaching and retaliatory killing of snow leopards. However, initiatives to offset the costs of living with carnivores and to make conservation beneficial to affected people have thus far been small, isolated, and heavily subsidized. Making these initiatives more comprehensive, expanding their coverage, and internalizing their costs are future challenged for the conservation of large carnivores such as the snow leopard.
|
|
|
Ming, M., Munkhtsog, B., Xu, F., Turghan, M., Yin, S. -jing, & Wei, S. - D. (2005). Markings as Indicator of Snow Leopard in Field Survey, in Xinjiang.
Abstract: The Snow Leopard (Uncia uncia) was a very rare species in China. The survey on the markings of Snow Leopard in Ahay and Tianshan Mountains is the major activity of the Project of Snow Leopard in Xinjiang, supported by International Snow Leopard Trust(ISLT)and Xinjiang Conservation Fund(XCF). During the field work from Sep to Nov 2004 the Xinjiang Snow Leopard Group(XSLG) set 67 transects of a total length of 47 776 m with mean transect length is 7 1 3 m at 9 locations.Total of 1 l 8 markings of Snow Leopards were found in 27 transects the mean density is 247km. The markings of Snow Leopard included the pug marks or footprints, scrapes, feces, bloodstain, scent spray, urine, hair or fur, claw rake, remains of prey corpse, sleep site, roar and others. From the quantity and locations of marks the XSLG got the information on habitat selection distribution region and relative abundance of the Snow Leopard in the study areas. The survey also provided knowledge on distribution and abundance of major prey potential conservation problems and human attitudes to Snow Leopards by taking 200 questionnaires in the study areas.
|
|
|
Bagchi, S., Mishra, C., Bhatnagar, Y.V., McCarthy, T. (2002). Out of Steppe? Pastoralism and ibex conservation in Spiti..
|
|
|
Fox, J. L. (1997). Conflict between predators and people in Ladakh. Cat News, 17, 18.
Abstract: During a six-week period in Hemis National Park, Ladakh, India, snow leopards killed 10 sheep and goats and one leopard gained access to a livestock pen and killed many of the animals inside. Dholes also killed sheep and goats, and a wolf killed a young horse. Residents routinely remove snow leopard cubs from their dens to limit future damage by this species. How to deal with the plight of the people living in the area while still protecting the endangered species are major concerns of the International Snow Leopard Trust, which manages Hemis National Park. lgh.
|
|
|
Hunter, D. (1997). Mongolian-American Snow Leopard Project. Cat News, 26, 15–16.
Abstract: A snow leopard project is underway to study snow leopards in Mongolia. The project, called the Mongolian-American Snow Leopard Project, involves the Wildlife Conservation Society, the Mongolian Association for the Conservation of Nature and Environment, the National Geographic Society, the Mongolian Ministry of Nature and the Environment, the U.S. National Biological Service, and the International Snow Leopard Trust. The objective of the study is to survey the distribution and status of Mongolia's snow leopards, including those living in the Gobi Desert. klf.
|
|
|
Jackson, R. (1999). Snow Leopards, Local People and Livestock Losses: Finding solutions using Appreciative Participatory Planning and Action (APPA) in the Markha Valley of Hemis National Park, Ladakh, October 6-26, 1999. Cat News, 31(Autumn), 22–23.
Abstract: Livestock depredation is emerging as a significant issue across the Himalaya, including the Hemis National Park (HNP) in Ladakh. Some consider that this protected area harbors the best snow leopard population in India, but local herders perceive the endangered snow leopard as a serious threat to their livelihood.
|
|
|
Jackson, R. (2000). Linking Snow Leopard Conservation and People-Wildlife Conflict Resolution, Summary of a multi-country project aimed at developing grass-roots measures to protect the endangered snow leopard from herder retribution. Cat News, 33, 12–15.
|
|
|
Jackson, R., Roe, J., Wangchuk, R., & Hunter, D. (2005). Camera-Trapping of Snow Leopards. Cat News, 42(Spring), 19–21.
Abstract: Solitary felids like tigers and snow leopards are notoriously difficult to enumerate, and indirect techniques like pugmark surveys often produce ambiguous information that is difficult to interpret because many factors influence marking behavior and frequency (Ahlborn & Jackson 1988). Considering the snow leopard's rugged habitat, it is not surprising then that information on its current status and occupied range is very limited. We adapted the camera-trapping techniques pioneered by Ullas Karanth and his associates for counting Bengal tigers to the census taking of snow leopards in the Rumbak watershed of the India's Hemis High Altitude National Park (HNP), located in Ladakh near Leh (76ø 50' to 77ø 45' East; 33ø 15' to 34ø 20'North).
|
|
|
Kosharev, E. P. (1994). Snow Leopard and Turkestan Lynx Poaching in Central Asia. Cat News, Autumn(21).
Abstract: Of the many problems facing the republics of Central Asia and Kazakhstan after the break-up of the USSR, poaching of endandered animals is of particular concern. Everything is up for sale through the black market, networks of acquaintances, middlemen or even advertisements in the newspapers: horns, skins, mounted trophies, animal parts for traditional medicine. Interest in snow leopard and Turkestan lynx (Lynx lynx isabellinus Blyth), and skins and horns from mountain sheep and goats sharply increased in 1992-93, and prices grew unusually high.
|
|
|
Koshkarev, E., & Vyrypaev, V. (2000). The snow leopard after the break-up of the Soviet Union. Cat News, 32, 9–11.
|
|
|
McCarthy, T., Khan, J., Ud-Din, J., & McCarthy, K. (2007). First study of snow leopards using GPS-satellite collars underway in Pakistan. Cat News, 46(Spring), 22–23.
Abstract: Snow leopards (Uncia uncia) are highly cryptic and occupy remote inaccessible habitat, making studying the cats difficult in the extreme. Yet sound knowledge of the cat's ecology, behavior and habitat needs is required to intelligently conserve them. This information is lacking for snow leopards, and until recently so was the means to fill that knowledge gap. Two long-term studies of snow leopards using VHF radio collars have been undertaken in Nepal (1980s) and Mongolia (1990s) but logistical and technological constraints made the findings of both studies equivocal. Technological advances in the interim, such as GPS collars which report data via satellite, make studies of snow leopards more promising, at least in theory.
|
|
|
McCarthy, T., Murray, K., Sharma, K., & Johansson, O. (2010). Preliminary results of a long-term study of snow leopards in South Gobi, Mongolia. Cat News, Autumn(53), 15–19.
Abstract: Snow leopards Panthera uncia are under threat across their range and require urgent conservation actions based on sound science. However, their remote habitat and cryptic nature make them inherently difficult to study and past attempts have provided insufficient information upon which to base effective conservation. Further, there has been no statistically-reliable and cost-effective method available to monitor snow leopard populations, focus conservation effort on key populations, or assess conservation impacts. To address these multiple information needs, Panthera, Snow Leopard Trust, and Snow Leopard Conservation Fund, launched an ambitious long-term study in Mongolia’s South Gobi province in 2008. To date, 10 snow leo-pards have been fitted with GPS-satellite collars to provide information on basic snow leopard ecology. Using 2,443 locations we calculated MCP home ranges of 150 – 938 km2, with substantial overlap between individuals. Exploratory movements outside typical snow leopard habitat have been observed. Trials of camera trapping, fecal genetics, and occupancy modeling, have been completed. Each method ex-hibits promise, and limitations, as potential monitoring tools for this elusive species.
Keywords: snow leopard, Mongolia, monitor, population, Panthera, Snow Leopard Trust, Snow Leopard Conservation Fund, South Gobi, ecology, radio collar, GPS-satellite collar, home range, camera trapping, fecal genetics, occupancy modeling
|
|
|
Ale, S. B., Boesi, R. (2005). Snow Leopard Sightings on the Top of the World. Cat News, (43), 19–20.
Abstract: Sightings of snow leopards Uncia uncia in the wild are rare. This is because snow leopards occur in low numbers and are very elusive (Schaller 1977). Snow leopards may be sparsely distributed,but they may not, however, be very elusive in the world's highest park, Sagarmatha (Mt. Everest) National Park (86° 30' 53“ E to 86° 99' 08” E and 27° 46' 19“ N to 27° 06' 45” N) in Nepal.
|
|
|
Ale, S., Thapa, K., Jackson, R., Smith, J.L.D. (2010). The fate of snow leopards in and around Mt. Everest. Cat News, 53(Autumn), 19–21.
Abstract: Since the early 2000s snow leopards Panthera uncia have re-colonized the southern slopes of Mt. Everest after several decades of extirpation. Are they now beginning to disperse to the adjoining valleys that may serve as habitat corridors linking the Everest region to other protected areas in Nepal? We conducted a cursory survey in autumn 2009 in Rolwaling lying west of Mt. Everest and detected snow leopard presence. We conclude that in these remote valleys snow leopards must rely upon livestock given the low abundance of natural prey, Himalayan tahr. Livestock-rearing is unfortunately declining in the region. Rolwaling requires immediate conservation attention for the continued survival of the endangered snow leopard and other high altitude flora and fauna.
|
|