toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Johansson, O., Nyam, E., Lkhagvajav, P., Alexander, J. A., Samelius, G. pdf 
  Title Predation Patterns and Hunting Behaviour of Snow Leopards: Insights from an Ibex Hunt Type Journal Article
  Year 2023 Publication (down) Snow Leopard Reports Abbreviated Journal  
  Volume Issue Pages 6-9  
  Keywords ambush, Capra sibirica, kill site, mountain, Panthera uncia  
  Abstract The hunting behaviours of the snow leopard (Panthera uncia) are poorly understood. In this note, we describe the successful hunt of an adult male ibex (Capra sibirica) by a known male snow leopard in Tost Mountains, Mongolia. The hunt started in a mountain slope close to three large boulders and progressed downhill for 115 m until it concluded at the bottom of a drainage. By comparing the habitat where the ibex was killed to the kill sites of 158 ibex and 17 argali (Ovis ammon) that were killed by GPS-collared snow leopards, we demonstrate that the majority (62%) of these kills occurred in drainages. We propose that in successful hunts, snow leopards commonly ambush from above, causing prey individuals to typically flee downhill. Thereby the prey maintain their momentum and it is not until they are slowed down upon reaching the bottom of the drainage that the snow leopards are able to subdue them.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1730  
Permanent link to this record
 

 
Author Ulziibadrakh, T., Uudus, B., Lkhagvajav, P., Alexander, J. S., Johansson, O., Sharma, K., Samelius, G. pdf 
  Title Variation in plant composition along a gradient of increasing distance from wells in a mountain steppe in southern Mongolia Type Journal Article
  Year 2023 Publication (down) Snow Leopard Reports Abbreviated Journal  
  Volume Issue Pages 10-16  
  Keywords desert steppe, livestock grazing, plant composition, South Gobi  
  Abstract Habitat degradation and heavy grazing by livestock are common conservation challenges across the steppes of Mongolia and Central Asia. Livestock grazing patterns are generally not uniform and are typically greater near campsites and watering holes. In this study, we examined how plant composition in a mountain steppe in southern Mongolia varied along a gradient of increasing distance from wells. We found that the cover and average height of Ephedra prezewalskii increased with increasing distance from the wells whereas soil chemistry and the other variables of plant composition that we examined were similar along the gradient of increasing distance from the wells. These results suggest relatively limited impact of livestock grazing on plant composition in our study. However, our study was limited in space and time and further studies are needed to understand the impact of livestock grazing in this mountain steppe in southern Mongolia.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1731  
Permanent link to this record
 

 
Author Jackson, M. R., Munkhtsog, B., Munkhtsog, B., Hunter, B., Rice, D., Hunter, D. O. pdf 
  Title Harnessing Drones for Snow Leopard Prey Surveys Type Journal Article
  Year 2024 Publication (down) SL Reports Abbreviated Journal  
  Volume Issue 3 Pages 1-8  
  Keywords argali, Asiatic ibex, surveys, drone, Mongolia, snow leopard, thermal imagery, Unmanned Aerial Vehicle (UAV)  
  Abstract Surveying snow leopard prey species such as argali, ibex or blue sheep through traditional ground-based observations is time-consuming, expensive, and challenging. Aerial drones present a promising alternative. We tested using thermal-sensor- equipped drones to count ungulate populations in Mongolia’s Ikh Nart Nature Reserve, surveying ~400km of transects along five fixed routes for forty-three missions. Drones detected 235 prey animals and 209 livestock; 26% of all sightings were in areas that would not have been visible to hypothetical ground-based observers. Our tests reinforced the utility of drones for counting snow leopard prey and highlighted important issues and future advances for supporting largely autonomous prey surveys. We recommend biologists build upon existing technology to attain an inexpensive, easy to use, and field ready set of equipment and procedures that can reliably improve or replace traditional transect or point count methods for large prey species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1753  
Permanent link to this record
 

 
Author Sharma, R. K., Singh, R. url 
  Title Over 100 Years of Snow Leopard Research: A Spatially Explicit Review of the State of Knowledge in the Snow Leopard Range. Type Technical Report WWF
  Year 2021 Publication (down) Research Gate Abbreviated Journal  
  Volume May 2021 Issue May 2021 Pages 1-43  
  Keywords  
  Abstract Executive Summary: Evolved to live in some of the world’s highest and harshest habitats, the elusive and rare snow leopards (Panthera uncia) are undisputed icons of High Asia. Across their distributional range in Central and South Asia, the snow leopard’s habitat spans diverse landscapes, with livestock herding being the most dominant form of land use. As a result, areas inhabited by snow leopards and people often overlap, creating challenges as well as opportunities for their conservation. Snow leopard conservation has received increasing attention in the past two decades and global interest in protecting this unique high-mountain cat continues to rise. However, effective and efficient snow leopard conservation initiatives require multi-dimensional research and collaboration among a diverse array of actors. National governments in snow leopard range, for instance, have repeatedly pledged their support for the conservation of the animal and the breathtaking landscapes they inhabit. These landscapes house an array of unique high-altitude wildlife and provide homes and life-sustaining natural resources to hundreds of millions of people. The mountains of High Asia also form the headwaters of 20 major river basins, an important water source for 22 countries (Sindorf et al., 2014). More than 2 billion people live in these basins which overlap the snow leopard range. Given the growing interest in and commitment towards conservation of snow leopards and their habitats, it is crucial to examine the depth and breadth of knowledge currently available to inform conservation efforts and identify gaps in that knowledge. We reviewed over 100 years of published research on snow leopards to examine its temporal and spatial trends across an array of thematic areas. Snow leopard research intensified in the 1970s and studies on snow leopards have continued to increase exponentially since then. However, just four hotspots of snow leopard research (sites with continued multi-year research) have emerged, with less than 23% of the snow leopard range being researched. Nepal, India and China have conducted the most snow leopard research, followed by Mongolia and Pakistan. Our analysis revealed that snow leopard research was highly focussed on ecological research followed by studies on human-wildlife conflict. Most ecological studies focused on estimating the number and distribution of snow leopards and prey species. However, conservationists have surveyed less than 3% of the snow leopard range using rigorous and scientifically acceptable abundance estimation approaches. The lack of attention to the human dimensions of conservation was particularly stark, especially given that the majority of the snow leopard range is inhabited by local communities dependent on livestock herding. More importantly, very few studies evaluated the effectiveness of conservation actions. A lack of evidence demonstrating and quantifying the impacts of conservation interventions is a significant knowledge gap in snow leopard research. In this review, we identify and suggest the high-priority research necessary for effective conservation planning for snow leopards and their multiple-use habitat in High Asia.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1636  
Permanent link to this record
 

 
Author Watts, S. W., McCarthy, T. M., Namgail, T. url 
  Title Modelling potential habitat for snow leopards (Panthera uncia) in Ladakh, India Type Research Article
  Year 2019 Publication (down) Plos One Abbreviated Journal  
  Volume Issue Pages 1-14  
  Keywords  
  Abstract The snow leopard Panthera uncia is an elusive species

inhabiting some of the most remote and inaccessible tracts of Central

and South Asia. It is difficult to determine its distribution and

density pattern, which are crucial for developing conservation

strategies. Several techniques for species detection combining camera

traps with remote sensing and geographic information systems have been

developed to model the habitat of such cryptic and low-density species

in challenging terrains. Utilising presence-only data from camera traps

and direct observations, alongside six environmental variables

(elevation, aspect, ruggedness, distance to water, land cover, and prey

habitat suitability), we assessed snow leopard habitat suitability

across Ladakh in northern India. This is the first study to model snow

leopard distribution both in India and utilising direct observation

data. Results suggested that elevation and ruggedness are the two most

influential environmental variables for snow leopard habitat

suitability, with highly suitable habitat having an elevation range of

2,800 m to 4,600 m and ruggedness of 450 m to 1,800 m. Our habitat

suitability map estimated approximately 12% of Ladakh’s geographical

area (c. 90,000 km2) as highly suitable and 18% as medium suitability.

We found that 62.5% of recorded livestock depredation along with over

half of all livestock corrals (54%) and homestays (58%) occurred within

highly suitable snow leopard habitat. Our habitat suitability model can

be used to assist in allocation of conservation resources by targeting

construction of livestock corrals to areas of high habitat suitability

and promoting ecotourism programs in villages in highly suitable snow

leopard habitat.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1608  
Permanent link to this record
 

 
Author Hameed, S., Din, J. U., Ali, H., Kabir, M., Younas, M., Rehman, E. U., Bari, F., Hao, W., Bischof, R., Nawaz, M. A. url 
  Title Identifying priority landscapes for conservation of snow leopards in Pakistan Type Journal Article
  Year 2020 Publication (down) Plos One Abbreviated Journal  
  Volume Issue Pages 1-20  
  Keywords  
  Abstract Pakistan’s total estimated snow leopard habitat is about

80,000 km2 of which about half is considered prime habitat. However,

this preliminary demarcation was not always in close agreement with the

actual distribution the discrepancy may be huge at the local and

regional level. Recent technological developments like camera trapping

and molecular genetics allow for collecting reliable presence records

that could be used to construct realistic species distribution based on

empirical data and advanced mathematical approaches like MaxEnt. The

current study followed this approach to construct an accurate

distribution of the species in Pakistan. Moreover, movement corridors,

among different landscapes, were also identified through circuit theory.

The probability of habitat suitability, generated from 98 presence

points and 11 environmental variables, scored the snow leopard’s assumed

range in Pakistan, from 0 to 0.97. A large portion of the known range

represented low-quality habitat, including areas in lower Chitral, Swat,

Astore, and Kashmir. Conversely, Khunjerab, Misgar, Chapursan, Qurumber,

Broghil, and Central Karakoram represented high-quality habitats.

Variables with higher contributions in the MaxEnt model were

precipitation during the driest month (34%), annual mean temperature

(19.5%), mean diurnal range of temperature (9.8%), annual precipitation

(9.4%), and river density (9.2). The model was validated through

receiver operating characteristic (ROC) plots and defined thresholds.

The average test AUC in Maxent for the replicate runs was 0.933 while

the value of AUC by ROC curve calculated at 0.15 threshold was 1.00.

These validation tests suggested a good model fit and strong predictive

power. The connectivity analysis revealed that the population in the

Hindukush landscape appears to be more connected with the population in

Afghani- stan as compared to other populations in Pakistan. Similarly,

the Pamir-Karakoram population is better connected with China and

Tajikistan, while the Himalayan population was connected with the

population in India. Based on our findings we propose three model

landscapes to be considered under the Global Snow Leopard Ecosystem

Protection Program (GSLEP) agenda as regional priority areas, to

safeguard the future of the snow leopard in Pakistan and the region.

These landscapes fall within mountain ranges of the Himalaya, Hindu Kush

and Karakoram-Pamir, respectively. We also identified gaps in the

existing protected areas network and suggest new protected areas in

Chitral and Gilgit-Baltistan to protect critical habitats of snow

leopard in Pakistan.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1617  
Permanent link to this record
 

 
Author Sharma, R. K., Sharma, K., Borchers, D., Bhatnagar, Y V., Suryawanshi, K. R., Mishra, C. url 
  Title Spatial variation in population-density of snow leopards in a multiple use landscape in Spiti Valley, Trans-Himalaya Type Research Article
  Year 2021 Publication (down) PloS One Abbreviated Journal  
  Volume Issue Pages 1-14  
  Keywords  
  Abstract The endangered snow leopard Panthera uncia occurs in human use landscapes in the mountains of South and Central Asia. Conservationists generally agree that snow leopards must be conserved through a land-sharing approach, rather than land-sparing in the form of strictly protected areas. Effective conservation through land-sharing requires a good understanding of how snow leopards respond to human use of the landscape. Snow leopard density is expected to show spatial variation within a landscape because of variation in the intensity of human use and the quality of habitat. However, snow leopards have been difficult to enumerate and monitor. Variation in the density of snow leopards remains undocumented, and the impact of human use on their populations is poorly understood. We examined spatial variation in snow leopard density in Spiti Valley, an important snow leopard landscape in India, via spatially explicit capture-recapture analysis of camera trap data. We camera trapped an area encompassing a minimum convex polygon of 953 km2. Our best model estimated an overall density of 0.5 (95% CI: 0.31–0.82) mature snow leopards per 100 km2. Using AIC, our best model showed the density of snow leopards to depend on estimated wild prey density, movement about activity centres to depend on altitude, and the expected number of encounters at the activity centre to depend on topography. Models that also used livestock biomass as a density covariate ranked second, but the effect of livestock was weak. Our results highlight the importance of maintaining high density pockets of wild prey populations in multiple-use landscapes to enhance snow leopard conservation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1637  
Permanent link to this record
 

 
Author Esson, C. L. pdf 
  Title A One Health approach to investigating the health and prevalence of zoonotic pathogens in snow leopards, sympatric wildlife, domestic animals and humans in the South Gobi Desert in Mongolia Type Journal Article
  Year 2018 Publication (down) PhD Thesis Abbreviated Journal  
  Volume Issue Pages 1-242  
  Keywords  
  Abstract The endangered Snow leopard (Panthera uncia) inhabits the high mountain regions through central Asia and is subjected to numerous threats including poaching for traditional Chinese medicine, retribution killing for preying on domestic stock, and habitat fragmentation. However the occurrence and impact of disease on snow leopard populations is unknown. As emerging infectious diseases of wildlife can be an insidious yet important cause of population decline due to mortality or reproductive failure, my study aimed initially to gain knowledge of pathogens circulating among wild and domestic hosts in this region. I used a broad One Health approach to survey a range of species to collect data on disease occurrence that would be useful in improving human and livestock health, as well as snow leopard conservation.

This study is set in the Tost Mountains of the South Gobi Desert of Mongolia and was prompted due to the unexplained deaths of four snow leopards detected within a short timeframe during an ecological study by members of the Snow Leopard Trust. However, investigating disease occurrence in remote, rare and endangered species is a challenge due to inaccessibility of sites, difficulty of capture, and processing samples without facilities.

A One Health approach uses multidisciplinary expertise such as ecological, medical and veterinary, to understand host, pathogen and environmental disease factors. This approach is especially useful for diseases that transfer between people, domestic animals and wildlife. As snow leopards are a rare and elusive species, my surveys were aimed at assessing pathogens circulating in snow leopards as well as in sympatric wild and domestic animals. I collected samples from the following hosts: snow leopards – the target species; rodents which are ubiquitous over the study area and are a suitable sentinel species; ibex which are a native ungulate and natural prey species of the snow leopard; domestic goats which are also a prey species of the snow leopard; free-ranging domestic dogs which interact with the goats. The local indigenous people interact with all these species including snow leopards, mostly via retribution killing. Water samples were also collected from waterholes and wells, which are communal meeting places as drinking sources for all species, hence enabling pathogen exchange. Samples collected included blood samples, faecal samples or rectal swabs and ectoparasites if present. These samples were transported to laboratories in Sweden and Belgium where I conducted diagnostic assays for zoonotic pathogens that are present in other regions of Mongolia and impact the health of humans and animals. I used enzyme- linked immune assay (ELISA), polymerase chain reaction (PCR) and next-generation sequencing (NGS) for pathogens including Coxiella burnetii, Toxoplasma gondii, Leptospira spp., Brucella spp., Yersinia pestis and tick borne encephalitis virus. Serovars of Leptospira were elucidated using microscopic agglutination tests (MAT). The dog blood samples were also tested for canine distemper virus. Ticks, faeces, rectal swabs and water were tested for bacteria, Echinococcus, Giardia and Cryptosporidium using PCR and NGS.

Health records for humans and animals in the region were not available so, in addition to testing animal samples, I used questionnaire surveys to obtain information on perceptions of the herders concerning health of their families, their domestic animals and wildlife. Questions also assessed preventative health management and treatments used.

Over three field trips I caught and sampled twenty snow leopards, 177 rodents (8 species), 41 dogs and 270 goats. I also sampled 11 waterholes/wells, and preserved 18 ticks, hundreds of fleas and collected faecal samples from ibex.

Most animals that were sampled and examined clinically appeared in good health, but the serosurvey revealed a moderate to high level of exposure to serious pathogens: C. burnetii, T. gondii and Leptospira spp. There were no published reports of human infections with these pathogens in the study area, which is likely due to a lack of testing.

Snow leopards had the highest prevalence of C. burnetii antibodies (25%), followed by rodents (16%), dogs (10%) and goats (9.5%). Goats had the highest prevalence of T. gondii antibodies (90%), dogs (66%), snow leopards (20%) and rodents (16%). Rodents had the highest prevalence of Leptospira spp. (34%), followed by snow leopards (20%) and dogs (5%). Serovars interrogans Australis was identified in the rodents and snow leopards and interrogans Ictohaemorrhagiae was identified in the rodents and dogs. Other serovars were also present from the results of the ELISA but did not match those listed in the MAT panel, so could not be identified. Goats were not tested for infection with leptospirosis. Brucella was not identified in the goats even though it occurs at high prevalence in stock in the rest of Mongolia where it is a large health and economic concern. In rodents, the zoonotic Puumala and Seoul hantavirus were identified for the first time in Mongolia. Analysis of data from rodents showed the pathogens detected (C. burnetii, T.gondii, Hanta virus and Leptospira spp.) differed significantly in prevalence, with a strong year effect driven mainly by Leptospira, which increased in prevalence across the three year study period. Toxoplasma gondii differed slightly in prevalence among rodent species. There was no significant difference in prevalence of interaction of pathogens among years or rodent species.

Poor health was detected in goats with 10 out of the 14 goats tested via haematology and biochemistry being anaemic with haematocrits less than 20%. Haematology and biochemistry values for the other animal species appeared normal. I established haematology and biochemistry reference tables for two rodent species – red-cheeked ground squirrels and jerboas.

Water samples were negative for serious pathogens. Fleas were negative for Yersinia pestis. However, ticks were positive for several genera of potential zoonoses, including Anaplasma, Bacillus, Coxiella, Clostridia, Francisella, Rickettsia, Staphylococcus, Streptococcus and Yersinia. Faecal samples were also positive for genera of potentially zoonotic bacteria including those listed above plus Bacteroides, Bordetella, Campylobacter and Enterococcus.

Results from the two questionnaire surveys revealed the main reported illness in people were colds and flu. However, the local doctor also reported hepatitis as common. She also said that the local people contracted brucellosis whereas I did not identify this pathogen in their livestock. The herders thought their main loss of stock was from predation, with wolves identified as the main predator and snow leopards as the second. Other causes of stock loss perceived as important were adverse climatic conditions such as drought or severe winters while infectious disease was not a concern. Results from these surveys also highlighted gaps in health care for humans and livestock, especially around vaccination and parasite treatments.

In summary, I found that snow leopards and other wild and domestic animals within the study area tested positive for previous exposure to several important zoonotic pathogens. These pathogens were likely circulating among species via contamination of pasture and via predation and have potential to cause illness and reproductive loss. However, I detected no adverse effects on the health of the animals due to infection with these pathogens, and observed no related mortality or illness during my field trips. Hence the deaths of the four snow leopards that were the impetus for my study have not been explained, and monitoring and surveillance of this population should continue.

My findings on wildlife and domestic animal pathogens have relative importance to improving productivity of livestock and the health of the nomadic herders. I recommend improving the health of goats through vaccination and anti-parasite programmes, which will improve their fecundity and survival and thus increase herder income. These programmes will also have flow-on effects to improve the health of the native ungulates that share the grazing areas by decreasing the risk of pathogen transfer between them and also to the snow leopards that prey on them. Demonstrating the importance of herd health may also help mitigate herder wildlife conflict as increased productivity could decrease the perceived importance of predation on herd numbers.

Coxiella burnetii and Leptospires spp are a likely cause of illness in people, despite the lack of reported diagnoses. As rodents had a moderate prevalence of all pathogens tested and inhabit the gers of the local people, it is important to raise awareness of the risk of pathogen transfer to people via rodent excrement contaminating stored food and eating utensils. Risk of human exposure to pathogens during goat slaughter can also be reduced via improved hygiene practices.

By identifying pathogens with broad host ranges in a variety of species in this remote mountainous region, my study provides the basis for understanding health risks to wildlife, domestic animals and humans. Consideration of likely transmission routes for pathogens between species can inform current recommendations to improve health, productivity and hence conservation, of the endangered snow leopard – The Ghost of the Mountain.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1744  
Permanent link to this record
 

 
Author Chetri, M., Odden, M., Devineau, O., McCarthy, T., Wegge, P. url 
  Title Multiple factors influence local perceptions of snow leopards and Himalayan wolves in the central Himalayas, Nepal. Type Journal Article
  Year 2020 Publication (down) PeerJ Abbreviated Journal  
  Volume Issue Pages 1-18  
  Keywords Panthera uncia, Canis lupus chanco, Perceptions, Large carnivores, Trans-Himalayas  
  Abstract An understanding of local perceptions of carnivores is

important for conservation and management planning. In the central

Himalayas, Nepal, we interviewed 428 individuals from 85 settlements

using a semi-structured questionnaire to quantitatively assess local

perceptions and tolerance of snow leopards and wolves. We used

generalized linear mixed effect models to assess influential factors,

and found that tolerance of snow leopards was much higher than of

wolves. Interestingly, having experienced livestock losses had a minor

impact on perceptions of the carnivores. Occupation of the respondents

had a strong effect on perceptions of snow leopards but not of wolves.

Literacy and age had weak impacts on snow leopard perceptions, but the

interaction among these terms showed a marked effect, that is, being

illiterate had a more marked negative impact among older respondents.

Among the various factors affecting perceptions of wolves, numbers of

livestock owned and gender were the most important predictors. People

with larger livestock herds were more negative towards wolves. In terms

of gender, males were more positive to wolves than females, but no such

pattern was observed for snow leopards. People’s negative perceptions

towards wolves were also related to the remoteness of the villages.

Factors affecting people’s perceptions could not be generalized for the

two species, and thus need to be addressed separately. We suggest future

conservation projects and programs should prioritize remote settlements.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1615  
Permanent link to this record
 

 
Author Karki, A., Panthi, S. url 
  Title Factors affecting livestock depredation by snow leopards (Panthera uncia) in the Himalayan region of Nepal Type Journal Article
  Year 2021 Publication (down) PeerJ Abbreviated Journal  
  Volume 9 Issue e11575 Pages 1-14  
  Keywords Conflict,Habitat,Himalaya,Livestockdepredation,Modeling,Snowleopard,Wildlife management  
  Abstract The snow leopard (Panthera uncia) found in central Asia is classified as vulnerable species by the International Union for Conservation of Nature (IUCN). Every year, large number of livestock are killed by snow leopards in Nepal, leading to economic loss to local communities and making human-snow leopard conflict a major threat to snow leopard conservation. We conducted formal and informal stakeholder’s interviews to gather information related to livestock depredation with the aim to map the attack sites by the snow leopard. These sites were further validated by district forest office staffs to assess sources of bias. Attack sites older than 3 years were removed from the survey. We found 109 attack sites and visited all the sites for geo location purpose (GPS points of all unique sites were taken). We maintained at least a 100 m distance between attack locations to ensure that each attack location was unique, which resulted in 86 unique locations. A total of 235 km2 was used to define livestock depredation risk zone during this study. Using Maximum Entropy (MaxEnt) modeling, we found that distance to livestock sheds, distance to paths, aspect, and distance to roads were major contributing factors to the snow leopard’s attacks. We identified 13.64 km2 as risk zone for livestock depredation from snow leopards in the study area. Furthermore, snow leopards preferred to attack livestock near livestock shelters, far from human paths and at moderate distance from motor roads. These identified attack zones should be managed both for snow leopard conservation and livestock protection in order to balance human livelihoods while protecting snow leopards and their habitats.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1640  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: