Home | << 1 2 >> |
![]() |
Xu, F., Ming, M., Yin, S. -jing, & Mardan. (2005). Snow Leopard Survey in Tumor Nature Reserve, Xingjiang (Vol. 24).
Abstract: Snow leopard survey was conducted in Oct-Nov 2004 at Tumor National Natural Reserve, Xinjiang, China. Because of its special living style, the snow leopard is difficult to observe by sight. Signs left by snow leopard become a good index to prove the existance of the big cat. There are mainly five kinds of signs, footprints, fectes, claw rakes and urine spray. From them we can know the distribution, probably population and habitat selection of snow leopard. This time in Tumor we investigated 5 difference places: Pochenzi in Mozat River area, Boxidun in Little Kuzbay River area, Yinyer in Tomur River area, Kurgan and Taglak in Quiong Tailan River area. 42 transects were run in this trip and a total of 57 signs found. Among them, footprints amounted to 71.9%, scrapes 21.1%, and feces 7.0%. The results showed that the big cat existed in Yinyer, Kurgan and Taglak areas and liked to select their habitat in the valley and didn't like to live in barren areas.
|
Filla, M., Lama, R. P., Filla, T., Heurich, M., Balkenhol, N., Waltert, M., Khorozyan, I. (2022). Patterns of livestock depredation by snow leopards and effects of intervention strategies: lessons from the Nepalese Himalaya. Wildlife Research, .
Abstract: Context: Large carnivores are increasingly threatened by anthropogenic activities, and their protection is among the main goals of biodiversity conservation. The snow leopard (Panthera uncia) inhabits high-mountain landscapes where livestock depredation drives it into conflicts with local people and poses an obstacle for its conservation.
Aims: The aim of this study was to identify the livestock groups most vulnerable to depredation, target them in implementation of practical interventions, and assess the effectiveness of intervention strategies for conflict mitigation. We present a novel attempt to evaluate intervention strategies for particularly vulnerable species, age groups, time, and seasons. Methods: In 2020, we conducted questionnaire surveys in two regions of the Annapurna Conservation Area, Nepal (Manang, n = 146 respondents and Upper Mustang, n = 183). We applied sample comparison testing, Jacobs’ selectivity index, and generalised linear models (GLMs) to assess rates and spatio-temporal heterogeneity of depredation, reveal vulnerable livestock groups, analyse potential effects of applied intervention strategies, and identify husbandry factors relevant to depredation. Key results: Snow leopard predation was a major cause of livestock mortality in both regions (25.4–39.8%), resulting in an estimated annual loss of 3.2–3.6% of all livestock. The main intervention strategies (e.g. corrals during night-time and herding during daytime) were applied inconsistently and not associated with decreases in reported livestock losses. In contrast, we found some evidence that dogs, deterrents (light, music playing, flapping tape, and dung burning), and the use of multiple interventions were associated with a reduction in reported night-time depredation of yaks. Conclusions and implications: We suggest conducting controlled randomised experiments for quantitative assessment of the effectiveness of dogs, deterrents, and the use of multiple interventions, and widely applying the most effective ones in local communities. This would benefit the long-term co-existence of snow leopards and humans in the Annapurna region and beyond. |
Xu, F., Ming, M., Yin, S. -jing, & Munkhtsog, B. (2006). Autumn Habitat Selection by Snow Leopard (Uncia uncia) in Beita Mountain, Xinjiang, China.
Abstract: Habitat selection of Snow Leopard ( Unica unica) in Beita Mountain of the Altay Mountain system in northeast Xinjiang was conducted from September to October 2004. Six habitat features of 59 sites used by Snow Leopard and 30 random plots were measured by locating 15 transects surveys in the study area . Vanderploge and Scaviaps selectivity index was used to assess Snow Leopardps selection for the different habitat parameters. Principal Component Analysis was used as the primary factor . The results indicated that Snow Leopard preferred the altitude between 2000 – 2 200 m and avoided 2 600 – 3 000 m ; selected cliff base , ridgeline and avoided hillside and valley bottom ; utilized the shrub and rejected the forest ; selected the nongrazing area and avoided the slightly broken region ; preferred north orientation and rejected the south orientation. The results show that grazing status , vegetation type , topography and the ruggedness are the primary factors for the habitat selection of Snow Leopard.
Keywords: habitat; Habitat selection; selection; snow; snow leopard; snow-leopard; leopard; uncia; Uncia uncia; Uncia-uncia; mountain; Xinjiang; China; Chinese; Altay; mountain system; system; 30; transects; transect; surveys; survey; study; area; analysis; primary; factor; 200; 600; Base; valley; Forest; region; south; grazing; status; topography
|