|   | 
Details
   web
Records
Author Kalashnikova, Y. A., Karnaukhov, A. S., Dubinin, M. Y., Poyarkov, A. D., Rozhnov, V. V.
Title POTENTIAL HABITAT OF SNOW LEOPARD (PANTHERA UNCIA, FELINAE) IN SOUTH SIBERIA AND ADJACENT TERRITORIES BASED ON THE MAXIMUM ENTROPY DISTRIBUTION MODEL Type Journal Article
Year 2019 Publication Abbreviated Journal
Volume 98 Issue 3 Pages 332-342
Keywords Snow leopard, irbis, Panthera uncia, Maxent, habitat model, potential habitat
Abstract The snow leopard is an endangered large felid inhabiting highlands of 12 Asian countries. It is distributed

across vast territories and adequate modern methods are required for mapping its potential habitats. The goal

of the present study is to create a model of snow leopard potential habitat within the northern part of its range

in Russia (and adjacent territories of Mongolia, China and Kazakhstan). More than 5 years of observations

(total number of presence points = 449), environmental variables and the maximum entropy distribution

method (Maxent) are used. The resulting map demonstrates that a suitable habitat (probability of the animal�s

presence between 0.5 and 1) of the northern population of snow leopard in Russia occupies 16500 km2

with a buffer of transient territories (probability between 0.25 and 0.49) covering 32800 km2. Most of a suitable

habitat within the study area is associated with the Altai Mountains, Western Sayan Mountains, Sangilen

Plateau, Tsagan-Shibetu and Shapshal. One third of the suitable habitat lies within areas of a varying protection

status. The results of modeling are of importance both for scientists and conservation managers, as they

allow for leopard occurrence to be predicted, supporting research on and the conservation of the species.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1480
Permanent link to this record
 

 
Author Karnaukhov, A. S., Malykh, S. V., Korablev, M. P., Kalashnikova, Y. M., Poyarkov, A. D., Rozhnov, V. V.
Title Current Status of the Eastern Sayan Snow Leopard (Panthera uncia) Grouping and Its Nutritive Base Type Journal Article
Year 2018 Publication Biology Bulletin Abbreviated Journal
Volume 45 Issue 9 Pages 1106-1115
Keywords Panthera uncia, Bol� shoi Sayan, Munku-Sardyk, Tunkinskie Gol� tsy, distribution area, molecular genetic analysis, modeling of potential habitats
Abstract A field survey of snow leopard (Panthera uncia) habitats was carried out in the southeastern part of

the Eastern Sayan Mountains (Okinskii and Tunkinskii districts of the Republic of Buryatia and the Kaa-

Khemskii district of Tuva Republic). Seven or eight adult snow leopards were observed as constant inhabitants

of the Tunkinskie Gol'tsy, Munku-Sardyk, and Bol'shoi Sayan mountain ridges. The presence of eight

snow leopards was confirmed using DNA-based analyses of scats collected in 2014 – 2016. The main prey species

of the snow leopard in Eastern Sayan is the Siberian ibex (Capra sibirica), but its abundance has steadily

decreased over the past 20 years. The red deer (Cervus elaphus) and the wild boar (Sus scrofa), which were

some of the most numerous ungulates in the survey area, are replacing the Siberian ibex in the snow leopard's

diet. In addition, the mountain hare (Lepus timidus) is also of importance to the snow leopard's diet.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1482
Permanent link to this record
 

 
Author Rashid, W., Shi, J., Rahim, I. U., Qasim, M., Baloch, M. N., Bohnett, E., Yang, F., Khan, I., Ahmad, B.
Title Modelling Potential Distribution of Snow Leopards in Pamir, Northern Pakistan: Implications for Human–Snow Leopard Conflicts Type Journal Article
Year 2021 Publication Sustainability Abbreviated Journal
Volume 13 Issue 13229 Pages 1-15
Keywords habitat fragmentation; habitat suitability; land use/cover change; Panthera uncia; MaxEnt model
Abstract The snow leopard (Panthera uncia) is a cryptic and rare big cat inhabiting Asia’s remote and harsh elevated areas. Its population has decreased across the globe for various reasons, includ
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1664
Permanent link to this record
 

 
Author Sultan, H., Rashid, W., Shi, J., Rahim, I. U., Nafees, M., Bohnett, E., Rashid, S., Khan, M. T., Shah, I. A., Han, H., Ariza-Montes, A.
Title Horizon Scan of Transboundary Concerns Impacting Snow Leopard Landscapes in Asia Type Journal Article
Year 2022 Publication MDPI Abbreviated Journal Land
Volume 11 Issue 248 Pages 1-22
Keywords collaboration; habitat; innovative solutions; integrated landscape approach; socio- ecological system; trade corridor; tourism
Abstract The high-altitude region of Asia is prone to natural resource degradation caused by a variety of natural and anthropogenic factors that also threaten the habitat of critical top predator species, the snow leopard (Panthera uncia). The snow leopard’s landscape encompasses parts of the twelve Asian countries and is dominated by pastoral societies within arid mountainous terrain. However, no investigation has assessed the vulnerability and pathways towards long-term sustainability on the global snow leopard landscape scale. Thus, the current study reviewed 123 peer-reviewed scientific publications on the existing knowledge, identified gaps, and proposed sustainable mitigation options for the longer term and on larger landscape levels in the range countries. The natural resource degradation in this region is caused by various social, economic, and ecological threats that negatively affect its biodiversity. The factors that make the snow leopard landscapes vulnerable include habitat fragmentation through border fencing, trade corridor infrastructure, non-uniform conservation policies, human–snow leopard conflict, the increasing human population, climatic change, land use and cover changes, and unsustainable tourism. Thus, conservation of the integrated Socio-Ecological System (SES) prevailing in this region requires a multi-pronged approach. This paper proposes solutions and identifies the pathways through which to implement these solutions. The prerequisite to implementing such solutions is the adoption of cross-border collaboration (regional cooperation), the creation of peace parks, readiness to integrate transnational and cross-sectoral conservation policies, a focus on improving livestock management practices, a preparedness to control human population growth, a readiness to mitigate climate change, initiating transboundary landscape-level habitat conservation, adopting environment-friendly trade corridors, and promoting sustainable tourism. Sustainable development in this region encompasses the political, social, economic, and ecological landscapes across the borders.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1671
Permanent link to this record
 

 
Author Li,J., Xue, Y., Hacker, C. E., Zhang, Y., Li, Y., Cong, W., Jin, L., Li, G., Wu, B., Li, D., Zhang,Y.
Title Projected impacts of climate change on snow leopard habitat in Qinghai Province, China Type Journal Article
Year 2021 Publication Ecology and Evolution Abbreviated Journal
Volume Issue 11 Pages 17202-17218
Keywords adaptive strategies, habitat corridors, National park, suitable habitat, vulnerability
Abstract Assessing species’ vulnerability to climate change is a prerequisite for developing effective strategies to reduce emerging climate-related threats. We used the maximum entropy algorithm (MaxEnt model) to assess potential changes in suitable snow leopard (Panthera uncia) habitat in Qinghai Province, China, under a mild climate change scenario. Our results showed that the area of suitable snow leopard habitat in Qinghai Province was 302,821 km2 under current conditions and 228,997 km2 under the 2050s climatic scenario, with a mean upward shift in elevation of 90 m. At present, nature reserves protect 38.78% of currently suitable habitat and will protect 42.56% of future suitable habitat. Current areas of climate refugia amounted to 212,341 km2 and are mainly distributed in the Sanjiangyuan region, Qilian mountains, and surrounding areas. Our results provide valuable information for formulating strategies to meet future conservation challenges brought on by climate stress. We suggest that conservation efforts in Qinghai Province should focus on protecting areas of climate refugia and on maintaining or building corridors when planning for future species management.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1685
Permanent link to this record
 

 
Author Li, Y., Zhang, Y., Yadong, X., Zhang, Y., Zhang, Y., Gao, Y. Li, D.
Title Analysis of Conservation Gaps and Landscape Connectivity for Snow Leopard in Qilian Mountains of China Type Journal Article
Year 2022 Publication Sustainability Abbreviated Journal 1-13
Volume 14 Issue 1638 Pages
Keywords national park; protection gap; landscape connectivity; habitat suitability
Abstract Human modification and habitat fragmentation have a substantial influence on large carnivores, which need extensive, contiguous habitats to survive in a landscape. The establishment of protected areas is an effective way to offer protection for carnivore populations by buffering them from anthropogenic impacts. In this study, we used MaxEnt to model habitat suitability and to identify conservation gaps for snow leopard (Panthera uncia) in the Qilian Mountains of China, and then assessed the impact of highways/railways and their corridors on habitat connectivity using a graph-based landscape connectivity model. Our results indicated that the study area had 51,137 km2 of potentially suitable habitat for snow leopards and that there were four protection gaps outside of Qilian Mountain National Park. The findings revealed that the investigated highway and railway resulted in a decrease in connectivity at a regional scale, and that corridor development might enhance regional connectivity, which strengthens the capacity of central habitat patches to act as stepping stones and improve connections between western and eastern habitat patches. This study emphasized the need for assessing the impact of highways and railways, as well as their role in corridor development, on species’ connectivity. Based on our results, we provide some detailed recommendations for designing protection action plans for effectively protecting snow leopard habitat and increasing habitat connectivity.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1686
Permanent link to this record
 

 
Author Xiao, C., Bai, D., Lambert, J. P., Li, Y., Cering, L., Gong, Z., Riordan, P., Shi, K.
Title How Snow Leopards Share the Same Landscape with Tibetan Agro-pastoral Communities in the Chinese Himalayas Type Journal Article
Year 2022 Publication Journal of Resources and Ecology Abbreviated Journal
Volume 13 Issue 3 Pages 483-500
Keywords habitat use; landscape ecology; occupancy model; Qomolangma; Panthera uncia
Abstract The snow leopard (Panthera uncia) inhabits a human-altered alpine landscape and is often tolerated by residents in regions where the dominant religion is Tibetan Buddhism, including in Qomolangma NNR on the northern side of the Chinese Himalayas. Despite these positive attitudes, many decades of rapid economic development and population growth can cause increasing disturbance to the snow leopards, altering their habitat use patterns and ultimately impacting their conservation. We adopted a dynamic landscape ecology perspective and used multi-scale technique and occupancy model to better understand snow leopard habitat use and coexistence with humans in an 825 km2 communal landscape. We ranked eight hypothetical models containing potential natural and anthropogenic drivers of habitat use and compared them between summer and winter seasons within a year. HABITAT was the optimal model in winter, whereas ANTHROPOGENIC INFLUENCE was the top ranking in summer (AICcw≤2). Overall, model performance was better in the winter than in the summer, suggesting that perhaps some latent summer covariates were not measured. Among the individual variables, terrain ruggedness strongly affected snow leopard habitat use in the winter, but not in the summer. Univariate modeling suggested snow leopards prefer to use rugged land in winter with a broad scale (4000 m focal radius) but with a lesser scale in summer (30 m); Snow leopards preferred habitat with a slope of 22° at a scale of 1000 m throughout both seasons, which is possibly correlated with prey occurrence. Furthermore, all covariates mentioned above showed inextricable ties with human activities (presence of settlements and grazing intensity). Our findings show that multiple sources of anthropogenic activity have complex connections with snow leopard habitat use, even under low human density when anthropogenic activities are sparsely distributed across a vast landscape. This study is also valuable for habitat use research in the future, especially regarding covariate selection for finite sample sizes in inaccessible terrain.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1688
Permanent link to this record
 

 
Author Changxi, X., Bai, D., Lambert, J. P., Li, Y., Cering, L., Gong, Z., Riordan, P., Shi, K.
Title How Snow Leopards Share the Same Landscape with Tibetan Agro-pastoral Communities in the Chinese Himalayas Type Journal Article
Year 2022 Publication Journal of Resources and Ecology Abbreviated Journal
Volume 13 Issue 3 Pages 483-500
Keywords habitat use; landscape ecology; occupancy model; Qomolangma; Panthera uncia
Abstract The snow leopard (Panthera uncia) inhabits a human-altered alpine landscape and is often tolerated by residents in regions where the dominant religion is Tibetan Buddhism, including in Qomolangma NNR on the northern side of the Chinese Himalayas. Despite these positive attitudes, many decades of rapid economic development and population growth can cause increasing disturbance to the snow leopards, altering their habitat use patterns and ultimately impacting their conservation. We adopted a dynamic landscape ecology perspective and used multi-scale technique and occupancy model to better understand snow leopard habitat use and coexistence with humans in an 825 km2 communal landscape. We ranked eight hypothetical models containing potential natural and anthropogenic drivers of habitat use and compared them between summer and winter seasons within a year. HABITAT was the optimal model in winter, whereas ANTHROPOGENIC INFLUENCE was the top ranking in summer (AICcw≤2). Overall, model performance was better in the winter than in the summer, suggesting that perhaps some latent summer covariates were not measured. Among the individual variables, terrain ruggedness strongly affected snow leopard habitat use in the winter, but not in the summer. Univariate modeling suggested snow leopards prefer to use rugged land in winter with a broad scale (4000 m focal radius) but with a lesser scale in summer (30 m); Snow leopards preferred habitat with a slope of 22° at a scale of 1000 m throughout both seasons, which is possibly correlated with prey occurrence. Furthermore, all covariates mentioned above showed inextricable ties with human activities (presence of settlements and grazing intensity). Our findings show that multiple sources of anthropogenic activity have complex connections with snow leopard habitat use, even under low human density when anthropogenic activities are sparsely distributed across a vast landscape. This study is also valuable for habitat use research in the future, especially regarding covariate selection for finite sample sizes in inaccessible terrain.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1698
Permanent link to this record
 

 
Author Hacker, C., Atzeni, L., Munkhtsog, B., Munkhtsog, B., Galsandorj, N., Zhang, Y., Liu, Y., Buyanaa, C., Bayandonoi, G., Ochirjav, M., Farrington, J. D., Jevit, M., Zhang, Y., Wu, L. Cong, W., Li, D., Gavette, C., Jackson, R., Janecka, J. E.
Title Genetic diversity and spatial structures of snow leopards (Panthera uncia) reveal proxies of connectivity across Mongolia and northwestern China Type Journal Article
Year 2022 Publication Landscape Ecology Abbreviated Journal
Volume Issue Pages 1-19
Keywords Admixture · Central Asia · Connectivity · Habitat Modeling · Landscape Genetics · Noninvasive Genetics · MEM · Spatial Structures
Abstract Understanding landscape connectivity and population genetic parameters is imperative for threatened species management. However, such information is lacking for the snow leopard (Panthera uncia). This study sought to explore hierarchical snow leopard gene flow patterns and drivers of genetic structure in Mongolia and China. A total of 97 individuals from across Mongolia and from the north-eastern edge of the Qinghai-Tibetan Plateau in Gansu Province to the middle of Qinghai Province in China were genotyped across 24 microsatellite loci. Distance-based frameworks were used to determine a landscape scenario best explaining observed genetic structure. Spatial and non-spatial methods were used to investigate fine-scale autocorrelation and similarity patterns as well as genetic structure and admixture. A genetic macro-division between populations in China and Mongolia was observed, suggesting that the Gobi Desert is a substantial barrier to gene flow. However, admixture and support for a resistance-based mode of isolation suggests connective routes that could facilitate movement. Populations in Mongolia had greater connectivity, indicative of more continuous habitat. Drivers of genetic structure in China were difficult to discern, and fine-scale sampling is needed. This study elucidates snow leopard landscape connectivity and helps to prioritize conservation areas. Although contact zones may have existed and occasional crossings can occur, establishing corridors to connect these areas should not be a priority. Focus should be placed on maintaining the relatively high connectivity for snow leopard populations within Mongolia and increasing research efforts in China.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1717
Permanent link to this record
 

 
Author Islam, M., Sahana, M., Areendran, G., Jamir, C., Raj, K., Sajjad, H.
Title Prediction of potential habitat suitability of snow leopard (Panthera uncia) and blue sheep (Pseudois nayaur) and niche overlap in the parts of western Himalayan region Type Journal Article
Year 2023 Publication Geo: Geography and Environment Abbreviated Journal
Volume 10 Issue e00121 Pages 1-15
Keywords bioclimatic variables, habitat suitability, MaxEnt model, niche overlap, western Himalayan region
Abstract The snow leopard (Panthera uncia) and blue sheep (Pseudois nayaur) are the inhabitants of remote areas at higher altitudes with extreme geographic and climatic conditions. The habitats of these least-studied species are crucial for sustaining the Himalayan ecosystem. We employed the Maximum Entropy (MaxEnt) species distribution model to predict the potential habitat suitability of snow leopards and blue sheep and extracted common overlapped niches. For this, we utilised presence location, bio-climatic and environmental variables, and correlation analysis was applied to reduce the negative impact of multicollinearity. A total of 134 presence locations of snow leopards and 64 for blue sheep were selected from the Global Biodiversity Information Facility (GBIF). The annual mean temperature (Bio1) was found to be the most useful and highly influential factor to predict the potential habitat suitability of snow leopards. Annual mean temperature, annual precipitation and isothermality were the major influencing factors for blue sheep habitat suitability. Highly influential bio-climatic, topographic and environmental variables were integrated to construct the model for predicting habitat suitability. The area under the curve (AUC) values for snow leopard (0.87) and blue sheep (0.82) showed that the models are under good representation. Of the total area investigated, 47% was suitable for the blue sheep and 38% for the snow leopards. Spatial habitat assessment revealed that nearly 11% area from the predicted suitable habitat class of both species was spatially matched (overlapped), 48.6% area was unsuitable under niche overlap and 40.5% area was spatially mismatched niche. The presence of snow leopards and blue sheep in some highly suitable areas was not observed, yet such areas have the potential to sustain these elusive species. The other geographical regions interested in exploring habitat suitability may find the methodological framework adopted in this study useful for formulating an effective conservation policy and management strategy.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1719
Permanent link to this record