toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Thapa, K. url 
  Title Is their any correlation between abundance of blue sheep population and livestock depredation by snow leopards in the Phu Valley, Manang District, Annapurna Conservation Area? Final report Type Report
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages 1-19  
  Keywords abundance; blue; blue sheep; blue-sheep; sheep; population; livestock; livestock depredation; livestock-depredation; depredation; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; valley; Manang; annapurna; annapurna conservation area; Annapurna-Conservation-Area; conservation; area; Report; project; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; Nepal  
  Abstract This study was undertaken in the Phu valley of Manang district in the Annapurna Conservation Area, Nepal,

Spring, 2004 and 2005. I used the Snow Leopard Management Information System (“second order” survey technique), to determine

the relative abundance of snow leopards in delineated areas in Phu valley. Transects routes were plotted by

randomly selected feasible landforms such as along ridgelines, cliff bases and river bluffs where snow

leopards sign is likely to be found. Altogether, 16 transects (total length of 7.912 km) were laid down (mean

transect length=0.495 km). They revealed, 54 sign sites (both relic and non-relic) and altogether 88 signs (72

scrapes, 11 feces, 3 scent mark, 2 pugmarks and 1 hair) were recorded (6.8 site/km and 11.1 signs/km). There

were 61.1% non-relic and 38.9% relic sites. The density of snow leopards in Phu Valley may be 4-5 snow

leopards/100 kmý.It was found that the Ghyo block had the highest sign density (13.6 mean sign item/km)

and Phu block (9.8 mean sign item/km) and the lowest in Ngoru block (3.9 mean sign item/km.). For blue sheep, direct count method was applied from different appropriate vantage points (fixed-point

count). I counted total individuals in each herd and classified all individuals whenever possible, using 8 X24

binocular and 15-60x spotting scope. A total 37 blue sheep herds and 1209 individuals were observed in

192.25 kmý of the study area (blue sheep density, 6.3 kmý). Average herd size was 32.68. Herd size varied

from 1 to 103 animals (the largest so far recorded). The average sex ratio male to female for the entire survey

area was 0.67. Recruitment rate was 47.13. The ratio of yearlings to adult female was 0.45. In Ghyo block

had total 168 blue sheep (area, 44.08 km2 or 3.8/ km2 i.e. 137.2 kg/ kmý). Blue sheep density in Ngoru block

showed 4.7/km2 (area, 65.47 km2). Highest density of blue sheep among three blocks was recorded in Phu

block, 8.9/km2 (or 320 kg/km2) in its 82.70 km2 area. A standard questionnaire was designed, and interviews conducted for relevant information was collected on

livestock depredation patterns (total household survey). Out of 33 households surveyed, 30 reported that they

had livestock depredation by the snow leopard in 2004. Altogether 58 animals were reportedly lost to snow

leopards (3.1% of the total mortality). Out of the estimated standing available biomass (1, 83,483kg) in the

Phu valley at least 2220 kg or 1.3% of the total livestock biomass was consumed by snow leopards in the

year of our study (2004). It was estimated that in the Phu valley annually 1.8 animals were lost per household

to snow leopards. This means approx. Rs.413560 (US$ 5,908) is lost annually in the valley (US$

179/household/annum). Ghyo block, had the highest animals loss (53.4%), followed by Phu block (36.2%)

and Ngoru block (10.3%) to snow leopards. There is positive correlation among the densities of blue sheep, relative abundance of the snow leopard and

livestock depredation. Blue sheep is the main prey species of the snow leopard in Phu valley and its

conservation therefore matters to reduce livestock depredation. A general patterns appears here that shows

that blue sheep (prey) abundance determine snow leopard (predator) abundance and that livestock

depredation by snow leopards may be minimal where there is good population of blue sheep, and vice versa.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Project funded by International Snow Leopard Trust Small Grants Program, 2005. Annapurna Conservation Area Project, Pokhara, Nepal. Approved no  
  Call Number SLN @ rana @ 1078 Serial 959  
Permanent link to this record
 

 
Author Prasad, S.N.; Chundawat, R.S.; Hunter, D.O.; Panwar, H.S.; Rawat, G.S. url 
  Title Remote sensing snow leopard habitat in the trans-Himalaya of India using spatial models and satellite imagery preliminary results Type Conference Article
  Year 1991 Publication Abbreviated Journal  
  Volume Issue Pages 519-523  
  Keywords snow-leopard; Gis; cartographic-modelling; India; Ladakh; Zanskar; predation; habitat; prey; predator; blue-sheep; snow leopard; blue; sheep; browse; cartographic modelling; cartographic; modelling; 810  
  Abstract The snow leopard (Panthera uncia) is a flagship species for conservation in the high mountain regions of central Asia. Data on snow leopard predation, habitat conditions and range of main prey species were gathered along with thematic maps of the study area for elevation, snow cover, sighting data, kill data, blue sheep use areas, and vegetation data. These data were entered into a GIS and used to help delineate surface features from a satellite image. Preliminary results show that general physiographic features of snow leopard habitat can be detected using satellite imagery and that GIS cartographic modeling techniques can improve this delineation. -from Authors  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Buhyoff, G.J.  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Title, Monographic: Resource Technology 90. Proc. second international symposium on advanced technology in natural resources management Place of Meeting: Washington, DC Approved no  
  Call Number SLN @ rana @ 176 Serial 792  
Permanent link to this record
 

 
Author Oli, M.K. url 
  Title Seasonal patterns in habitat use of blue sheep Pseudois nayaur (Artiodactyla, Bovidae) in Nepal Type Journal Article
  Year 1996 Publication Mammalia Abbreviated Journal  
  Volume 60 Issue 2 Pages 187-193  
  Keywords blue-sheep; snow-leopard; Panthera-uncia; Nepal; conservation; prey; predator; snow leopard; blue; sheep; browse; panthera; uncia; 670  
  Abstract Blue sheep (Pseudois nayaur) are the main prey of the endangered snow leopard (Panthera uncia) as well as an important game species in Nepal. A knowledge of how blue sheep utilize their habitat is essential for the scientific management of the sheep and for the conservation of the snow leopard, but we only have a limited understanding of this aspect of blue sheep ecology. I studied the habitat use pattern of blue sheep by direct observation in the Anna-purna Conservation Area, Nepal where they occur sympatrically with the snow leopard. The sheep used grassland habitats more frequently during pre-parturition (spring) and post-parturition (autumn) than other habitat types, but scrub and grassland habitats were used equally frequently during the rut (winter). The sheep used smooth undulating slopes of medium steepness (<40 degrees) on southerly aspects within the elevation range of 4,200-4,600 m most frequently in all seasons, and there was no evidence of seasonal migration along the elevation gradient. When not in broken landforms (e.g., cliff, landslides), the sheep maintained proximity (less than or equal to 150 m) to such features suggesting their importance as escape cover (i.e., from predators). The use of habitat components by blue sheep appeared to be related to the distribution of foraging areas and escape cover.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes UNIV EDINBURGH,INST CELL ANIM & POPULAT BIOL,EDINBURGH EH9 3JT,MIDLOTHIAN,SCOTLANDANNAPURNA CONSERVAT AREA PROJECT,KATMANDU,NEPAL /Publisher:MUSEUM NAT HIST NATURELLE, PARIS Document Type: English Approved no  
  Call Number SLN @ rana @ 289 Serial 751  
Permanent link to this record
 

 
Author Oli, M.K. url 
  Title Snow leopards and blue sheep in Nepal: Densities and predator: prey ratio Type Journal Article
  Year 1994 Publication Journal of Mammalogy Abbreviated Journal  
  Volume 75 Issue 4 Pages 998-1004  
  Keywords Nepal; blue-sheep; prey; livestock; predation; blue; sheep; browse; 740; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; blue sheep; densities; density; predator  
  Abstract I studied snow leopards (Panthera uncia) and blue sheep (Pseudois nayaur) in Manang District, Annapurna Conservation Area, Nepal, to estimate numbers and analyze predator-prey interactions. Five to seven adult leopards used the 10-5-km-2 study area, a density of 4.8 to 6.7 leopards/100 km-2. Density of blue sheep was 6.6 10.2 sheep/km-2, and biomass density was 304 kg/km-2. Estimated relative biomass consumed by snow leopards suggested that blue sheep were the most important prey; marmots (Marmota himalayana) also contributed significantly to the diel of snow leopards Snow leopards in Manang were estimated to harvest 9-20% of total biomass and 11-24% of total number of blue sheep annually. Snow leopard: blue sheep ratio was 1:114-1:159 on a weight basis, which was considered sustainable given the importance of small mammals in the leopard's diet and the absence of other competing predators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Document Type: English Call Number: 599.05 JO Approved no  
  Call Number SLN @ rana @ 236 Serial 746  
Permanent link to this record
 

 
Author Oli, M.K.; Taylor, I.R.; Rogers, M.K. url 
  Title Diet of the snow leopard (Panthera uncia) in the Annapurna Conservation Area, Nepal Type Journal Article
  Year 1993 Publication Journal of Zoology London Abbreviated Journal  
  Volume 231 Issue 3 Pages 365-370  
  Keywords predation; scats; prey; Nepal; blue-sheep; marmot; yaks; pika; livestock; diet; blue; sheep; browse; 770  
  Abstract The diet of the snow leopard (Panthera uncia) was studied from 213 scats collected between April 1990 and February 1991 in the Annapurna Conservation Area, Nepal. Seven species of wild and five species of domestic mammals were taken, as well as an unidentified mammal and birds. Blue sheep (Pseudois nayaur) were the most frequently eaten prey. Himalayan marmots (Marmota himalayana) were also important, except in winter when they were hibernating. During winter, snow leopards ate more Royle's pika (Ochotona roylei) and domestic livestock. Yaks were eaten more frequently than other livestock types.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Document Type: English Call Number: QL1 .J879 Approved no  
  Call Number SLN @ rana @ 206 Serial 744  
Permanent link to this record
 

 
Author Khatiwada, J.R.; Chalise, M.K.; Kyes, R. url 
  Title Survey of Snow Leopard (Uncia uncia) and Blue Sheep (Pseudois nayaur) populations in the Kangchenjunga Conservation Area (KCA), Nepal. Final report Type Report
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages 1-13  
  Keywords survey; snow; snow leopard; snow-leopard; leopard; uncia; Uncia uncia; Uncia-uncia; blue; blue sheep; blue-sheep; sheep; Pseudois; pseudois nayaur; Pseudois-nayaur; nayaur; populations; population; conservation; area; Nepal; Report; study; information; management; system; Slims; relative abundance; abundance; transects; transect; length; sign; scrapes; scrape; 20; feces; scent; pugmarks; hairs; Hair; using; livestock; livestock depredation; livestock-depredation; depredation; patterns; herders; herder; snow leopards; snow-leopards; leopards; Animals; Animal  
  Abstract This study was carried out in the Kangchenjunga Conservation Area (KCA), Eastern Nepal from Feb – Nov 2007. We used the Snow Leopard Information Management System, SLIMS (second order survey technique) to determine the relative abundance of snow leopard in the upper part of KCA. Altogether, 36 transects (total length of 15.21 km) were laid down in the major three blocks of KCA. 104 Signs (77 scrapes, 20 feces, 2 Scent mark, 3 Pugmarks and 2 hairs) were recorded. Fixed-point count method was applied for blue sheep from appropriate vantage points. We counted total individual in each herd using 8x42 binocular and 15-60x spotting scope. A total of 43 herds and 1102 individuals were observed in the area. The standard SLIMS questionnaire was conducted to find out relevant information on livestock depredation patterns. Out of 35 households surveyed in KCA, 48% of herders lost livestock due to snow leopards. A total of 21 animals were reportedly lost due to snow leopards from August to September 2007.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Project funded by Snow Leopard Network's Snow Leopard Conservation Grant Program. Approved no  
  Call Number SLN @ rana @ 1070 Serial 533  
Permanent link to this record
 

 
Author Schaller, G.B. url 
  Title On the behaviour of Blue Sheep (Pseudois nayaur) Type Journal Article
  Year 1972 Publication Journal of Bombay Natural Historical Society Abbreviated Journal  
  Volume 69 Issue Pages 523-537  
  Keywords predator; prey; hunting; scat; blue-sheep; Nepal; blue; sheep; browse; 2230  
  Abstract Two or three snow leopards hunted in the study area in eastern Nepal. Describes content of some snow leopard scat  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 24 Serial 862  
Permanent link to this record
 

 
Author Jackson, R.M. url 
  Title Home Range, Movements and Habitat use of Snow Leopard (Uncia uncia) in Nepal Type Book Whole
  Year 1996 Publication Abbreviated Journal  
  Volume Issue Pages 233 pp  
  Keywords Nepal; blue-sheep; predator; prey; home-range; behavior; capture; telemetry; habitat; marking; activity; movement; tracking; blue; sheep; browse; home range; home; range; 990  
  Abstract Home ranges for five radio-tagged snow leopards (Uncia uncia) inhabiting prime habitat in Nepal Himalaya varied in size from 11-37 km2. These solitary felids were crepuscular in activity, and although highly mobile, nearly 90% of all consecutive day movements involved a straight line distance of 2km or less. No seasonal difference in daily movement or home range boundry was detected. While home ranges overlapped substancially, use of common core spaces was temporally seperated, with tagged animals being located 1.9 km or more apart during the smae day. Spatial analysis indicated that 47-55% of use occured within only 6-15% of total home area. The snow leopards shared a common core use area, which was located at a major stream confuence in an area where topography, habitat and prey abundance appeared to be more favorable. A young female used her core area least, a female with two cubs to the greatest extent. the core area was marked significantly more with scrapes, Faeces and other sighn than non-core sites, suggesting that social marking plays an important role in spacing individuals. Snow leopards showed a strong preference for bedding in steep, rocky or broken terrain, on or close to a natural vegetation or landform edge. linear landform features, such as a cliff or major ridgeline, were preferred for travelling and day time resting. This behavior would tend to place a snow leopard close to its preferred prey, blue sheep (Psuedois nayaur), which uses the same habitat at night. Marking was concetrated along commonly travelled routes, particularly river bluffs, cliff ledges and well defined ridgelines bordering stream confluences--features that were most abundant within the core area. Such marking may facilitate mutual avoidance, help maintain the species' solitary social structure, and also enable a relatively high density of snow leopard, especially within high-quality habitat.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher University of London Place of Publication University of London Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Date of Copyright: 1996 Approved no  
  Call Number SLN @ rana @ 275 Serial 481  
Permanent link to this record
 

 
Author Schaller, G.B.; Jurang, R.; Mingjiang, Q. url 
  Title Status of snow leopard (Panthera-uncia) in Qinghai-Province and Gansu Province-China Type Journal Article
  Year 1988 Publication Biological Conservation Abbreviated Journal  
  Volume 45 Issue 3 Pages 179-194  
  Keywords status; population; China; Qinhai-province; Gansu-province; conservation; snow-leopard; Panthera-uncia; prey; ungulates; blue-sheep; marmot; snow leopard; blue; sheep; browse; qinhai province; qinhai; province; gansu province; gansu; panthera uncia; panthera; uncia; 860  
  Abstract The status and distribution of the snow leopard Panthera uncia was investigated in two provinces of China. The cats occur over about 65,000km2 or 9% of the Qinghai Province, and in a few places along the western edge of Gansu Province. In many areas the animals have in recent decades been decimated or locally eradicated, as have their prey. Counts of wild ungulates in 9 mountain block, totalling 1375km2, known for abundant wildlife, had an average of 1.4-5.4 animals km2, principally blue sheep Psuedois nayaur, which together with marmot Marmota himalayana, represent the snow leopards main prey. Possibly 650 snow leopards survive in Qinghai but shooting and trapping of this legally protected animal and the hunting of blue sheep for local consumtion and export threaten their existence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Publisher:ELSEVIER SCI LTD, OXFORD Approved no  
  Call Number SLN @ rana @ 113 Serial 867  
Permanent link to this record
 

 
Author Shrestha, B. url 
  Title Prey Abundance and Prey Selection by Snow Leopard (uncia uncia) in the Sagarmatha (Mt. Everest) National Park, Nepal Type Report
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages 1-35  
  Keywords project; snow; snow leopard; snow-leopard; leopard; network; conservation; program; prey; abundance; selection; uncia; Uncia uncia; Uncia-uncia; Sagarmatha; national; national park; National-park; park; Nepal; resource; predators; predator; ecological; impact; region; community; structure; number; research; population; status; density; densities; wild; prey species; prey-species; species; Himalayan; tahr; musk; musk-deer; deer; game; birds; diet; livestock; livestock depredation; livestock-depredation; depredation; awareness; co-existence; ungulates; ungulate; Human; using; areas; area; monitoring; transect; Hair; identification; scat; attack; patterns; sighting; 1760; populations; birth; Male; Female; young; domestic; domestic livestock; 120; scats; yak; Dog; pika; wildlife; Seasons; winter; horse; study; cover; land; predation; Pressure; development; strategy; threatened; threatened species; threatened-species; conflicts; conflict; people; control; husbandry; compensation; reintroduction; blue; blue sheep; blue-sheep; sheep; free ranging  
  Abstract Predators have significant ecological impacts on the region's prey-predator dynamic and community structure through their numbers and prey selection. During April-December 2007, I conducted a research in Sagarmatha (Mt. Everest) National Park (SNP) to: i) explore population status and density of wild prey species; Himalayan tahr, musk deer and game birds, ii) investigate diet of the snow leopard and to estimate prey selection by snow leopard, iii) identify the pattern of livestock depredation by snow leopard, its mitigation, and raise awareness through outreach program, and identify the challenge and opportunities on conservation snow leopard and its co-existence with wild ungulates and the human using the areas of the SNP. Methodology of my research included vantage points and regular monitoring from trails for Himalayan tahr, fixed line transect with belt drive method for musk deer and game birds, and microscopic hair identification in snow leopard's scat to investigate diet of snow leopard and to estimate prey selection. Based on available evidence and witness accounts of snow leopard attack on livestock, the patterns of livestock depredation were assessed. I obtained 201 sighting of Himalayan tahr (1760 individuals) and estimated 293 populations in post-parturient period (April-June), 394 in birth period (July -October) and 195 November- December) in rutting period. In average, ratio of male to females was ranged from 0.34 to 0.79 and ratio of kid to female was 0.21-0.35, and yearling to kid was 0.21- 0.47. The encounter rate for musk deer was 1.06 and density was 17.28/km2. For Himalayan monal, the encounter rate was 2.14 and density was 35.66/km2. I obtained 12 sighting of snow cock comprising 69 individual in Gokyo. The ratio of male to female was 1.18 and young to female was 2.18. Twelve species (8 species of wild and 4 species of domestic livestock) were identified in the 120 snow leopard scats examined. In average, snow leopard predated most frequently on Himalayan tahr and it was detected in 26.5% relative frequency of occurrence while occurred in 36.66% of all scats, then it was followed by musk deer (19.87%), yak (12.65%), cow (12.04%), dog (10.24%), unidentified mammal (3.61%), woolly hare (3.01%), rat sp. (2.4%), unidentified bird sp. (1.8%), pika (1.2%), and shrew (0.6%) (Table 5.8 ). Wild species were present in 58.99% of scats whereas domestic livestock with dog were present in 40.95% of scats. Snow leopard predated most frequently on wildlife species in three seasons; spring (61.62%), autumn (61.11%) and winter (65.51%), and most frequently on domestic species including dog in summer season (54.54%). In term of relative biomass consumed, in average, Himalayan tahr was the most important prey species contributed 26.27% of the biomass consumed. This was followed by yak (22.13%), cow (21.06%), musk deer (11.32%), horse (10.53%), wooly hare (1.09%), rat (0.29%), pika (0.14%) and shrew (0.07%). In average, domestic livestock including dog were contributed more biomass in the diet of snow leopard comprising 60.8% of the biomass consumed whilst the wild life species comprising 39.19%. The annual prey consumption by a snow leopard (based on 2 kg/day) was estimated to be three Himalayan tahr, seven musk deer, five wooly hare, four rat sp., two pika, one shrew and four livestock. In the present study, the highest frequency of attack was found during April to June and lowest to July to November. The day of rainy and cloudy was the more vulnerable to livestock depredation. Snow leopard attacks occurred were the highest at near escape cover such as shrub land and cliff. Both predation pressure on tahr and that on livestock suggest that the development of effective conservation strategies for two threatened species (predator and prey) depends on resolving conflicts between people and predators. Recently, direct control of free – ranging livestock, good husbandry and compensation to shepherds may reduce snow leopard – human conflict. In long term solution, the reintroduction of blue sheep at the higher altitudes could also “buffer” predation on livestock.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Project funded by Snow Leopard Network's Snow Leopard Conservation Grant Program. Forum of Natural Resource Managers, Nepal. Approved no  
  Call Number SLN @ rana @ 1076 Serial 887  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: