Hellstrom, M., Kruger, E., Naslund, J., Bisther, M., Edlund, A., Hernvall, P., Birgersson, V., Augusto, R., Lancaster, M. L. (2023). Capturing environmental DNA in snow tracks of polar bear, Eurasian lynx and snow leopard towards individual identification. Frontiers in Conservation Science, 4(1250996), 1–9.
Abstract: Polar bears (Ursus maritimus), Eurasian lynx (Lynx lynx) and snow leopards (Panthera uncia) are elusive large carnivores inhabiting snow-covered and remote areas. Their effective conservation and management are challenged by inadequate population information, necessitating development of novel data collection methods. Environmental DNA (eDNA) from snow tracks (footprints in snow) has identified species based on mitochondrial DNA, yet its utility for individual-based analyses remains unsolved due to challenges accessing the nuclear genome. We present a protocol for capturing nuclear eDNA from polar bear, Eurasian lynx and snow leopard snow tracks and verify it through genotyping at a selection of microsatellite markers. We successfully retrieved nuclear eDNA from 87.5% (21/24) of wild polar bear snow tracks, 59.1% (26/44) of wild Eurasian lynx snow tracks, and the single snow leopard sampled. We genotyped over half of all wild polar bear samples (54.2%, 13/24) at five loci, and 11% (9/44) of wild lynx samples and the snow leopard at three loci. Genotyping success from Eurasian lynx snow tracks increased to 24% when tracks were collected by trained rather than untrained personnel. Thirteen wild polar bear samples comprised 11 unique genotypes and two identical genotypes; likely representing 12 individual bears, one of which was sampled twice. Snow tracks show promise for use alongside other non-invasive and conventional methods as a reliable source of nuclear DNA for genetic mark-recapture of elusive and threatened mammals. The detailed protocol we present has utility for broadening end user groups and engaging Indigenous and local communities in species monitoring.
|
Alexander, J. S., Murali, R., Mijiddorj, T. N., Agvaantseren, B., Lhamo, C., Sharma, D., Suryawanshi, K. R., Zhi, L., Sharma, K., Young, J. C. (2023). Applying a gender lens to biodiversity conservation in High Asia. Frontiers in Conservation Science, , 1–8.
Abstract: Community-based conservation efforts represent an important approach to facilitate the coexistence of people and wildlife. A concern, however, is that these efforts build on existing community structures and social norms, which are commonly dominated by men. Some biodiversity conservation approaches may consequently neglect women’s voices and deepen existing inequalities and inequities. This paper presents two community case studies that draw upon the knowledge and experience gained in our snow leopard conservation practice in pastoral and agro-pastoral settings in Mongolia and India to better understand women’s roles and responsibilities. In these settings, roles and responsibilities in livestock management and agriculture are strongly differentiated along gender lines, and significant gaps remain in women’s decision-making power about natural resources at the community level. We argue that context-specific and gender-responsive approaches are needed to build community support for conservation actions and leverage women’s potential contributions to conservation outcomes.
|
Arias, M., Coals, P., Ardiantiono, Elves-Powell, J., Rizzolo, J. B., Ghoddousi, A., Boron, V., da Silva, M., Naude, V., Williams, V., Poudel, S., Loveridge, A., Payan, E., Suryawanshi, K., Dickman, A. (2024). Reflecting on the role of human-felid conflict and local use in big cat trade. Conservation Science and Practice, 6(e13030), 1–7.
Abstract: Illegal trade in big cat (Panthera spp.) body parts is a prominent topic in scientific and public discourses concerning wildlife conservation. While illegal trade is generally acknowledged as a threat to big cat species, we suggest that two enabling factors have, to date, been under-considered. To that end, we discuss the roles of human-felid conflict, and “local” use in illegal trade in big cat body parts. Drawing examples from across species and regions, we look at generalities, contextual subtleties, ambiguities, and definitional complexities. We caution against underestimating the extent of “local” use of big cats and highlight the potential of conflict killings to supply body parts.
|
Sanyal, O., Bashir, T., Rana, M., Chandan, P. (2023). First photographic record of the snow leopard Panthera uncia in Kishtwar High Altitude National Park, Jammu and Kashmir, India. Oryx, , 1–5.
Abstract: The snow leopard Panthera uncia is categorized as Vulnerable on the IUCN Red List. It is the least well-known of the large felids because of its shy and elusive nature and the inaccessible terrain it inhabits across the mountains of Central and South Asia. We report the first photographic record of the snow leopard in Kishtwar High Altitude National Park, India. During our camera-trapping surveys, conducted using a grid-based design, we obtained eight photographs of snow leopards, the first at 3,280 m altitude on 19 September 2022 and subsequent photographs over 3,004-3,878 m altitude. We identified at least four different individuals, establishing the species’ occurrence in Kiyar, Nanth and Renai catchments, with a capture rate of 0.123 ± SE 0.072 captures/100 trap-nights. ghts. We also recorded the presence of snow leopard prey species, including the Siberian ibex Capra sibirica, Himalayan musk deer Moschus leucogaster, long-tailed marmot Marmota caudata and pika Ochotona sp., identifying the area as potential snow leopard habitat. Given the location of Kishtwar High Altitude National Park, this record is significant for the overall snow leopard conservation landscape in India. We recommend a comprehensive study across the Kishtwar landscape to assess the occupancy, abundance, demography and movement patterns of the snow leopard and its prey. In addition, interactions between the snow leopard and pastoral communities should be assessed to understand the challenges facing the conservation and management of this important high-altitude region.
|
Ismaili, R. R. R., Peng, X., Li., Y, Ali, A., Ahmad, T., Rahman, A. U., Ahmad, S., Shi, K. (2024). Modeling Habitat Suitability of Snow Leopards in Yanchiwan National Reserve, China. Animals, 14(1938), 1–21.
Abstract: Snow leopards (Panthera uncia) are elusive predators inhabiting high-altitude and mountainous rugged habitats. The current study was conducted in the Yanchiwan National Nature Reserve, Gansu Province, China, to assess the habitat suitability of snow leopards and identify key environmental factors inducing their distribution. Field data collected between 2019 and 2022 through scat sampling and camera trapping techniques provided insights into snow leopard habitat preferences. Spatial distribution and cluster analyses show distinct hotspots of high habitat suitability, mostly concentrated near mountainous landscapes. While altitude remains a critical determinant, with places above 3300 m showing increased habitat suitability, other factors such as soil type, human footprint, forest cover, prey availability, and human disturbance also play important roles. These variables influence ecological dynamics and are required to assess and manage snow leopard habitats. The MaxEnt model has helped us to better grasp these issues, particularly the enormous impact of human activities on habitat suitability. The current study highlights the importance of altitude in determining snow leopard habitat preferences and distribution patterns in the reserve. Furthermore, the study underscores the significance of considering elevation in conservation planning and management strategies for snow leopards, particularly in mountainous regions. By combining complete environmental data with innovative modeling tools, this study not only improves local conservation efforts but also serves as a model for similar wildlife conservation initiatives around the world. By understanding the environmental factors driving snow leopard distribution, conservation efforts can be more efficiently directed to ensure the long-term survival of this endangered species. This study provides valuable insights for evidence-based conservation efforts to safeguard the habitats of snow leopards amidst emerging anthropogenic pressure and environmental fluctuations.
|
Jackson, M. R., Munkhtsog, B., Munkhtsog, B., Hunter, B., Rice, D., Hunter, D. O. (2024). Harnessing Drones for Snow Leopard Prey Surveys. SL Reports, 3, 1–8.
Abstract: Surveying snow leopard prey species such as argali, ibex or blue sheep through traditional ground-based observations is time-consuming, expensive, and challenging. Aerial drones present a promising alternative. We tested using thermal-sensor- equipped drones to count ungulate populations in Mongolia’s Ikh Nart Nature Reserve, surveying ~400km of transects along five fixed routes for forty-three missions. Drones detected 235 prey animals and 209 livestock; 26% of all sightings were in areas that would not have been visible to hypothetical ground-based observers. Our tests reinforced the utility of drones for counting snow leopard prey and highlighted important issues and future advances for supporting largely autonomous prey surveys. We recommend biologists build upon existing technology to attain an inexpensive, easy to use, and field ready set of equipment and procedures that can reliably improve or replace traditional transect or point count methods for large prey species.
|
Khanyari, M., Sanyal, O., Chandan, P., Bajaj, D., Sharma, C., Rana, M., Sharma, N., Bashir, T., Suryawanshi, K. (2024). A new dawn? Population baselines of snow leopards and other mammals of the Kishtwar High Altitude National Park, India. Integrative Conservation, , 1–10.
Abstract: Accurately assessing the status of threatened species requires reliable population estimates. Despite this necessity, only a small proportion of the global distribution range of the vulnerable snow leopard (Panthera uncia) has been systematically sampled. The Indian section of the Greater Himalayas, which includes Kishtwar High Altitude National Park (KHANP), harbours potential snow leopard habitat. Nevertheless, there has been limited ecological and conservation research focusing on species that are specific to KHANP, as well as limited research on the broader biodiversity of the Greater Himalayas. We used Spatially Explicit Capture‐Recapture (SECR) models to provide—to our knowledge—the first robust snow leopard population density and abundance estimates from KHANP. We also provide a Relative Abundance Index (RAI) for non‐volant mammals (excluding small rodents). Our study sampled three catchments within the Dachhan region of KHANP—Kibber, Nanth and Kiyar—using 44 cameras over a 45‐day period between May and June 2023. We identified four unique snow leopard individuals across 15 detections in nine camera locations. SECR analysis estimated a density of 0.50 snow leopards per 100 km2 (95% confidence interval: 0.13–1.86), corresponding to an abundance of four individual (4–9) adults. Camera trapping revealed a total of 16 mammal species, including the endangered Kashmir musk deer (Moschus cupreus). Marmots (Marmota caudata) had the highest RAI of 21.3 (±0.2). Although the estimated density and abundance of snow leopards in our study area had relatively wide 95% confidence intervals, our combined results of snow leopard densities and RAIs of prey species such as ibex and marmots indicate that KHANP is a potentially important area for snow leopards. Given the geopolitical history of Jammu and Kashmir in India, the region where KHANP is located, wildlife research remains a low priority. We hope our study encourages authorities to support further research. This study is an initial step towards evaluating the potential of KHANP as a conservation landscape under the Government of India's Project Snow Leopard.
|
Nyam, E., Alexander, J. S., Byambasuren, C., Johansson, O., Samelius, G., Lkhagvajav, P. (2024). Snow leopard digging for water in an arid environment. SL Reports, 3, 37–40.
Abstract: Adaptations to arid environments, involving strategies to conserve and utilize water, are vital for wildlife. Water availability in these regions depends on seasonal rainfall, and subsequently affect species distribution and behavior. This note documents a snow leopard (Panthera uncia) in the Tost Mountains of southern Mongolia digging for water, a previously undocumented behavior. The first author identified evidence of snow leopards digging for water. Camera traps were then used in an attempt to document this behavior. Unique pelt patterns identified one snow leopard digging for water in the summer of 2022, with drinking observed. Other species also drank at the site, suggesting snow leopards could act as ecological engineers by providing water for other species. Four other snow leopards were observed to visit the site in the late fall, winter, and early spring of 2022 and 2023. These snow leopards did not dig or drink, but this may largely have been related to subzero temperatures (-15°C to -30°C) and the ground being frozen for most of this period. The snow leopard digging for and exposing water may help to support biodiversity in desert ecosystems. However, further research is needed to determine its prevalence and impact. Understanding these strategies is crucial for conservation, especially with increasing droughts and extreme weather in arid landscapes.
|
Dorji, R., Letro, L., Yangden, S., Dendup, P., Dhendup, T. Lhamo, Y. (2024). Rare and unusual snow leopard encounters in the broadleaf forest of the Bhutanese Himalayas. SL Reports, 3, 13–20.
Abstract: The snow leopard Panthera uncia, a top predator in Central and South Asia, faces population declines due to habitat degradation, prey depletion, retaliatory killings, poaching, and climate change. In Bhutan, where the species is protected, we report two rare sightings in the Gedu regionʼs broadleaved and fir forests, at 2,708 masl and 3,839 masl, respectively, which are lower than the typical speciesʼ prime habitats in Bhutan. These findings suggest that this area may function as an important corridor or a potential range expansion beyond typical high-altitude habitats (3,000 to 5,800 masl). This discovery underscores the speciesʼ ecological adaptability and highlights the need for enhanced conservation strategies, including habitat connectivity mapping and local community education. Additionally, it highlights the importance of protecting and conserving habitats outside of protected areas for speciesʼ long-term persistence.
|
Cancellare, I. A., Weckworth, B., Caragiulo, A., Pilgrim, K. L., McCarthy, T. M., Abdullaev, A., Amato, G., Bian, X., Bykova, E., Dias-Freedman, I., Gritsina, M., Hennelly, L. M., Janjua, S., Johansson, O., Kachel, S., Karnaukhov, A., Korablev, M., Kubanychbekov, Z., Kulenbekov, R., Liang, X., Lkhagvajav, P., Meyer, T. K., Munkhtsog, B., Munkhtsog, B., Nawaz, M. A., Ostrowski, S., Paltsyn, M., Poyarkov, A., Rabinowitz, S., Rooney, T., Rosen, T., Rozhnov, V. V., Sacks, B. N., Schwartz, M. K., McCarthy, K. P. (2024). Snow leopard phylogeography and population structure supports two global populations with single refugial origin. Biodiversity and Conservation, , 1–19.
Abstract: Snow leopards (Panthera uncia) inhabit the mountainous regions of High Asia, which experienced serial glacial contraction and expansion during climatic cycles of the Pleistocene. The corresponding impacts of glacial vicariance may have alternately promoted or constrained genetic differentiation to shape the distribution of genetic lineages and population structure. We studied snow leopard phylogeography across High Asia by examining range-wide historical and contemporary genetic structure with mitochondrial DNA and microsatellite markers. We genotyped 182 individuals from across snow leopard range and sequenced portions of the mitogenome in a spatially stratified subset of 80 individuals to infer historical biogeographic and contemporary patterns of genetic diversity. We observed a lack of phylogeographic structure, and analyses suggested a single refugial origin for all sampled populations. Molecular data provided tentative evidence of a hypothesized glacial refugia in the Tian Shan-Pamir-Hindu Kush-Karakoram mountain ranges, and detected mixed signatures of population expansion. Concordant assessments of microsatellite data indicated two global genetic populations, though we detected geographic differences between historical and contemporary population structure and connectivity inferred from mitochondrial and microsatellite data, respectively. Using the largest sample size and geographic coverage to date, we demonstrate novel information on the phylogeographic history of snow leopards, and corroborate existing interpretations of snow leopard connectivity and genetic structure. We recommend that conservation efforts incorporate genetic data to define and protect meaningful conservation units and their underlying genetic diversity, and to maintain the snow leopard’s adaptive potential and continued resilience to environmental changes.
|