|   | 
Details
   web
Records
Author Singh, N.J.
Title Animal – Habitat relationships in high altitude rangelands Type Manuscript
Year 2008 Publication PhD Thesis Abbreviated Journal
Volume Issue Pages 150
Keywords high altitude, homogeneous, argali, habitat selection, resource selection function, ENFA, stratified random sampling, sexual segregation, SSAS, livestock, predation, resources
Abstract This study conducted in the high altitude rangelands of Indian Transhimalaya, deals with basic questions regarding the ecology of an endangered species, the wildsheep Tibetan argali (Ovis ammon hodgsoni) and applied issues related to its conservation and potential conflict with the local nomadic pastoralists. The basic questions on ecology are aimed at delineating the habitat and resource selection processes, identifying factors causing sexual segregation and efficient surveying and sampling. The applied aspect focuses on the changing face of pastoralism and the potential impacts of modernising livestock husbandry on argali.

Overall, the study provides a general framework towards the understanding of argali-habitat relationships at different spatio-temporal scales. The spatial determinant associated with altitude in the area, predicts argali habitat and resource selection in this relatively homogenous landscape. These determine the range of other topographic variables and forage characteristics selected by argali. The selection of feeding patches in the selected range of altitude and topography is mainly characterised by their greenness and the quality of plant groups. Adjusting to changing forage quality, argali display an opportunistic feeding strategy, selecting grasses in early spring and switching to forbs later in summer. Nevertheless, the habitat selection process did not appear to differ among the sexes to drive sexual segregation. There was, however, strong segregation among the sexes as well as between lactating and non lactating females. The reasons for segregation appeared to be predominantly social, but driven ultimately by predation and concomitantly by resources. The habitat selection information was used to design a stratified random sampling strategy that led to i) a significant reduction in survey effort in sampling these sparsely distributed species and ii) reduction in sampling bias.

The applied aspect of the study outlines and evaluates the dramatic changes in the nomadic pastoralism that have occurred in the past five decades in the study area. These have led to a loss of pastures (-25 to -33%) of the nomads, consequent readjustment in traditional patterns of pasture use, intensified grazing pressures (25 to 70%) and rangeland degradation in the area. Such changes may have serious consequences on the survival of local wildlife, as tested with a study of the effects on argali of livestock presence and resource exploitation. Hence, a successful conservation and recovery strategy should focus on: minimising the impacts of livestock on argali, identifying the factors affecting the persistence of the current populations, increasing local sub populations of this species to prevent extinction due to stochastic events, prevent loss of genetic diversity and excessive fragmentation and thus ensuring gene flow.

Ecological Niche Factor Analyses (ENFA), bias-reduced logistic regression and Fuzzy correspondence analyses (FCA) were used to answer habitat and resource selection questions. A sexual segregation and aggregation statistic (SSAS) was used to estimate the components of sexual segregation and test segregation. SSAS combined with canonical correspondence analyses (CCA) allowed the estimation of segregation based on habitat variables. Logistic regression models were formulated to estimate models on which the stratified random sampling strategy was based. The 9 Animal – Habitat relationships in high altitude rangelands overall study also included surveys, interviews and literature reviews to understand the nomads’ movement and pasture use patterns of their livestock. Kernel density estimations (KDE) were used to estimate extent of range overlaps between livestock and argali.
Address
Corporate Author Thesis
Publisher University of Tromsø Place of Publication Norway Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) PhD Thesis Approved no
Call Number SLN @ rana @ Serial 1306
Permanent link to this record
 

 
Author Shrestha, B.
Title Prey Abundance and Prey Selection by Snow Leopard (uncia uncia) in the Sagarmatha (Mt. Everest) National Park, Nepal Type Report
Year 2008 Publication Abbreviated Journal
Volume Issue Pages 1-35
Keywords project; snow; snow leopard; snow-leopard; leopard; network; conservation; program; prey; abundance; selection; uncia; Uncia uncia; Uncia-uncia; Sagarmatha; national; national park; National-park; park; Nepal; resource; predators; predator; ecological; impact; region; community; structure; number; research; population; status; density; densities; wild; prey species; prey-species; species; Himalayan; tahr; musk; musk-deer; deer; game; birds; diet; livestock; livestock depredation; livestock-depredation; depredation; awareness; co-existence; ungulates; ungulate; Human; using; areas; area; monitoring; transect; Hair; identification; scat; attack; patterns; sighting; 1760; populations; birth; Male; Female; young; domestic; domestic livestock; 120; scats; yak; Dog; pika; wildlife; Seasons; winter; horse; study; cover; land; predation; Pressure; development; strategy; threatened; threatened species; threatened-species; conflicts; conflict; people; control; husbandry; compensation; reintroduction; blue; blue sheep; blue-sheep; sheep; free ranging
Abstract Predators have significant ecological impacts on the region's prey-predator dynamic and community structure through their numbers and prey selection. During April-December 2007, I conducted a research in Sagarmatha (Mt. Everest) National Park (SNP) to: i) explore population status and density of wild prey species; Himalayan tahr, musk deer and game birds, ii) investigate diet of the snow leopard and to estimate prey selection by snow leopard, iii) identify the pattern of livestock depredation by snow leopard, its mitigation, and raise awareness through outreach program, and identify the challenge and opportunities on conservation snow leopard and its co-existence with wild ungulates and the human using the areas of the SNP. Methodology of my research included vantage points and regular monitoring from trails for Himalayan tahr, fixed line transect with belt drive method for musk deer and game birds, and microscopic hair identification in snow leopard's scat to investigate diet of snow leopard and to estimate prey selection. Based on available evidence and witness accounts of snow leopard attack on livestock, the patterns of livestock depredation were assessed. I obtained 201 sighting of Himalayan tahr (1760 individuals) and estimated 293 populations in post-parturient period (April-June), 394 in birth period (July -October) and 195 November- December) in rutting period. In average, ratio of male to females was ranged from 0.34 to 0.79 and ratio of kid to female was 0.21-0.35, and yearling to kid was 0.21- 0.47. The encounter rate for musk deer was 1.06 and density was 17.28/km2. For Himalayan monal, the encounter rate was 2.14 and density was 35.66/km2. I obtained 12 sighting of snow cock comprising 69 individual in Gokyo. The ratio of male to female was 1.18 and young to female was 2.18. Twelve species (8 species of wild and 4 species of domestic livestock) were identified in the 120 snow leopard scats examined. In average, snow leopard predated most frequently on Himalayan tahr and it was detected in 26.5% relative frequency of occurrence while occurred in 36.66% of all scats, then it was followed by musk deer (19.87%), yak (12.65%), cow (12.04%), dog (10.24%), unidentified mammal (3.61%), woolly hare (3.01%), rat sp. (2.4%), unidentified bird sp. (1.8%), pika (1.2%), and shrew (0.6%) (Table 5.8 ). Wild species were present in 58.99% of scats whereas domestic livestock with dog were present in 40.95% of scats. Snow leopard predated most frequently on wildlife species in three seasons; spring (61.62%), autumn (61.11%) and winter (65.51%), and most frequently on domestic species including dog in summer season (54.54%). In term of relative biomass consumed, in average, Himalayan tahr was the most important prey species contributed 26.27% of the biomass consumed. This was followed by yak (22.13%), cow (21.06%), musk deer (11.32%), horse (10.53%), wooly hare (1.09%), rat (0.29%), pika (0.14%) and shrew (0.07%). In average, domestic livestock including dog were contributed more biomass in the diet of snow leopard comprising 60.8% of the biomass consumed whilst the wild life species comprising 39.19%. The annual prey consumption by a snow leopard (based on 2 kg/day) was estimated to be three Himalayan tahr, seven musk deer, five wooly hare, four rat sp., two pika, one shrew and four livestock. In the present study, the highest frequency of attack was found during April to June and lowest to July to November. The day of rainy and cloudy was the more vulnerable to livestock depredation. Snow leopard attacks occurred were the highest at near escape cover such as shrub land and cliff. Both predation pressure on tahr and that on livestock suggest that the development of effective conservation strategies for two threatened species (predator and prey) depends on resolving conflicts between people and predators. Recently, direct control of free – ranging livestock, good husbandry and compensation to shepherds may reduce snow leopard – human conflict. In long term solution, the reintroduction of blue sheep at the higher altitudes could also “buffer” predation on livestock.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Project funded by Snow Leopard Network's Snow Leopard Conservation Grant Program. Forum of Natural Resource Managers, Nepal. Approved no
Call Number SLN @ rana @ 1076 Serial 887
Permanent link to this record