|
Mishra, C., & Fitzherbert, A. (2004). War and wildlife: a post-conflict assessment of Afghanistan's Wakhan Corridor. Oryx, 38(1), 102–105.
Abstract: Prior to the last two decades of conflict, Afghanistan's Wakhan Corridor was considered an important area for conservation of the wildlife of high altitudes. We conducted an assessment of the status of large mammals in Wakhan after 22 years of conflict, and also made a preliminary assessment of wildlife trade
in the markets of Kabul, Faizabad and Ishkashem. The survey confirmed the continued occurrence of at least eight species of large mammals in Wakhan, of which the snow leopard Uncia uncia and Marco Polo sheep Ovis ammon are globally threatened. We found evidence of human-wildlife conflict in Wakhan due to livestock depredation by snow leopard and wolf Canis lupus. Large mammals are hunted for meat, sport, fur, and in retaliation against livestock depredation. The fur trade in Kabul is a threat to the snow leopard, wolf, lynx Lynx lynx and common leopard Panthera pardus.
|
|
|
Panwar, H. S., Fox, J. L., Sinha, S. P., & Chundawat, R. S. (1986). Ecology of the Snow Loepard and Associated Prey in Central Ladakh.
|
|
|
Sitnikov, P. (1988). The Death of a Snow Leopard. In L.Blomqvist (Ed.), (pp. 7–8). Helsinki, Finland.
|
|
|
Spearing, A. (2002). The Snow Leopard in Zanskar, Jammu & Kashmir, NW India.. Islt: Islt.
Abstract: The paper summarises the alleged conflict between livestock herders and wild predators in the trans-Himalayan region of Zanskar, NW India. The snow leopard (Uncia uncia) is seriously threatened by this conflict, with at least thirteen killed in the last seven years in 3 of the study villages alone. Results of snow leopard sign surveys are described, revealing significant increases since the last survey (1986) consistent with alleged increases in livestock depredation. Attitudes toward wildlife and opinions on population trends are assessed. Depredation hotspots are identified and the cost of livestock predation is
discussed in terms of recent developments and social changes in the Zanskar region.
Illegal hunting and retaliatory killing are described, and essential programs and
conservation measures are suggested. Even at this early stage, there appears scope for raising rural incomes and lifting the burden of co-existence with snow leopard and other unique mountain fauna.
|
|
|
International Snow Leopard Trust. (2000). Snow Leopard News Spring 2000. Seattle, Wa: Islt.
|
|
|
Jackson, R., Ahlborn, G.G. (1986). Appendix: Snow leopard managment recommendations provided to HMG in: Himalayan Snow Leopard Project: Final Progress Report, Phase I. Report: 1-7. Himalayan.
Abstract: Preliminary recommendations for the management of snow leopard and its prey are provided for the Langu Valley segment of the Shey-Pkoksundo National Park. Park-wide and country-wide conservation options and management recommendations await results of the surveys scheduled for 1987. The following management objectives are formulated: 1) Protection and ultimate restoration of all natural communities within the area 2) Special protection measures for snow leopard and musk deer (strict control of hunting and livestock grazing) 3) Secure natural resources around local villages 4) Respect traditional rights of villagers, while controlling high impact human activities 5) Secure cooperation of local people. These objectives are refined and recommendations for concrete conservation actions are made.
Notes: document is a part of the Himalayan Snow Leopard Project: Final Progress Report, Phase I
|
|
|
Suryawanshi, K. R., Bhatnagar, Y. V. B., Redpath, S., Mishra, C. (2013). People, predators and perceptions: patterns of livestock depredation by snow leopards and wolves. Journal of Applied Ecology, 50, 550–560.
Abstract: 1. Livestock depredation by large carnivores is an important conservation and economic concern
and conservation management would benefit from a better understanding of spatial variation
and underlying causes of depredation events. Focusing on the endangered snow leopard
Panthera uncia and the wolf Canis lupus, we identify the ecological factors that predispose
areas within a landscape to livestock depredation. We also examine the potential mismatch
between reality and human perceptions of livestock depredation by these carnivores whose
survival is threatened due to persecution by pastoralists.
2. We assessed the distribution of the snow leopard, wolf and wild ungulate prey through field
surveys in the 4000 km2 Upper Spiti Landscape of trans-Himalayan India. We interviewed local
people in all 25 villages to assess the distribution of livestock and peoples’ perceptions of the risk
to livestock from these carnivores. We monitored village-level livestock mortality over a 2-year
period to assess the actual level of livestock depredation. We quantified several possibly influential
independent variables that together captured variation in topography, carnivore abundance
and abundance and other attributes of livestock. We identified the key variables influencing livestock
depredation using multiple logistic regressions and hierarchical partitioning.
3. Our results revealed notable differences in livestock selectivity and ecological correlates of
livestock depredation – both perceived and actual – by snow leopards and wolves. Stocking
density of large-bodied free-ranging livestock (yaks and horses) best explained people’s threat
perception of livestock depredation by snow leopards, while actual livestock depredation was
explained by the relative abundance of snow leopards and wild prey. In the case of wolves,
peoples’ perception was best explained by abundance of wolves, while actual depredation by
wolves was explained by habitat structure.
4. Synthesis and applications. Our results show that (i) human perceptions can be at odds
with actual patterns of livestock depredation, (ii) increases in wild prey populations will intensify
livestock depredation by snow leopards, and prey recovery programmes must be accompanied
by measures to protect livestock, (iii) compensation or insurance programmes should
target large-bodied livestock in snow leopard habitats and (iv) sustained awareness
programmes are much needed, especially for the wolf.
|
|
|
Li, J., Yin, H., Wang, D., Jiagong, Z., Lu, Zhi. (2013). Human-snow leopard conflicts in the Sanjiangyuan Region of the Tibetan Plateau. Biological Conservs, (166), 118–123.
Abstract: Conflicts between humans and snow leopards are documented across much of their overlapping distribution
in Central Asia. These conflicts manifest themselves primarily in the form of livestock depredation
and the killing of snow leopards by local herders. This source of mortality to snow leopards is a key conservation concern. To investigate human-snow leopard conflicts in the Sanjiangyuan Region of the Tibetan Plateau, we conducted household interviews about local herders’ traditional use of snow leopard
parts, livestock depredation, and overall attitudes towards snow leopards. We found most respondents
(58%) knew that snow leopard parts had been used for traditional customs in the past, but they claimed
not in the past two or three decades. It may be partly due to the issuing of the Protection of Wildlife Law
in 1998 by the People’s Republic of China. Total livestock losses were damaging (US$ 6193 per household
in the past 1 year), however snow leopards were blamed by herders for only a small proportion of those
losses (10%), as compared to wolves (45%) and disease (42%). Correspondingly, the cultural images of
snow leopards were neutral (78%) and positive (9%) on the whole. It seems that human-snow leopard
conflict is not intense in this area. However, snow leopards could be implicated by the retaliatory killing
of wolves. We recommend a multi-pronged conservation program that includes compensation, insurance
programs, and training local veterinarians to reduce livestock losses.
|
|
|
Maheshwari, A., Midha, N., Chehrukupalli, A. (2014). Participatory Rural Appraisal and Compensation Intervention: Challenges and Protocols While Managing Large Carnivore–Human Conflict. Human Dimensions of Wildlife: An International Journal, 19, 62–71.
Abstract: When large carnivores cause socioeconomic losses in a community, conflict increases,
retaliatory killing of the carnivore can occur, and conservation efforts are undermined.
We focused on Participatory Rural Appraisal (PRA) and economic compensation
schemes as approaches for managing conflict. PRA is a tool for collecting data on
the large carnivore–human conflict and economic compensation schemes for those
affected negatively by carnivore presence. We reviewed published papers and reports
on large carnivore–human conflicts, PRA, and compensation schemes. This article
details insights into common pitfalls, key lessons learned, possible solutions including
new approaches for compensation and protocols to be followed while managing large
carnivore–human conflict. We hope to contribute to a meaningful dialogue between
locals, managers, and researchers and help in effective implementation of conservation
programs to mitigate large carnivore–human conflict around the protected areas.
|
|
|
Chen, P., Gao, Y., Lee, A. T. L., Cering, L., Shi, K., Clark, S. G. (2016). Human–carnivore coexistence in Qomolangma (Mt. Everest) Nature Reserve, China: Patterns and compensation. Biological Conservation, (197), 18–26.
Abstract: Livestock depredation by large carnivores is frequently reported in Qomolangma (Mt. Everest) National Nature Reserve, Tibet Autonomous Region of China. Seeking to minimize conflicts, we assessed depredation patterns and ways to upgrade the compensation program. We gathered 9193 conflict records over 2011–2013 to determine the extent and tempo-spatial patterns of the depredation.Weinterviewed 22 local officials and 94 residents to learn their views on depredations and to assess the adequacy of compensation. Data showed that wolves (Canis lupus), lynx (Lynx lynx), and snowleopards (Panthera uncia)were themajor livestock predators. Total livestock
loss accounted for 1.2% of the entire stockholding (n=846,707) in the region. Wolves and lynx tended to take sheep and goats,whereas snowleopards favored yaks and cattle in relation to their proportional abundance. Predation mostly occurred in March through July. Livestock depredation by all predators when combined was best explained by terrain ruggedness and density of small- and large-bodied livestock. Temporal and spatial predation patterns variedamong carnivores.Most respondents (74%) attributed depredation causes to an increase in carnivore abundance. Only 7% blamed lax livestock herding practice for predation losses. Five percent said that
predation was the result of livestock population increases, while 11% had no idea. The compensation scheme was found to be flawed in all aspects—predation verification, application procedure, compensation standard, operational resource allocation, making payment, and other problems. To enhance management for human–carnivore coexistence, we recommend a problem-oriented, integrated, adaptive approach that targets the complex social context of the conflict and addresses the interconnected functions of decision-making process.
|
|