toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kachel, S., Bayrakcismith, R., Kubanychbekov, Z., Kulenbekov, R., McCarthy, T., Weckworth, B., Wirsing, A. pdf 
  Title Ungulate spatiotemporal responses to contrasting predation risk from wolves and snow leopards Type Journal Article
  Year 2022 Publication Journal of Animal Ecology Abbreviated Journal  
  Volume Issue Pages 1-16  
  Keywords landscape of fear, multiple-predator effects, non-consumptive effects, predation-risk effects, predator facilitation, risk allocation, snow leopard, wolf  
  Abstract 1. Spatial responses to risk from multiple predators can precipitate emergent consequences for prey (i.e. multiple-predator effects, MPEs) and mediate indirect interactions between predators. How prey navigate risk from multiple predators may therefore have important ramifications for understanding the propagation of predation-risk effects (PREs) through ecosystems.

2. The interaction of predator and prey traits has emerged as a potentially key driver of antipredator behaviour but remains underexplored in large vertebrate systems, particularly where sympatric prey share multiple predators. We sought to better generalize our understanding of how predators influence their ecosystems by considering how multiple sources of contingency drive prey distribution in a multi-predator–multi-prey system.

3. Specifically, we explored how two sympatric ungulates with different escape tactics—vertically agile, scrambling ibex Capra sibirica and sprinting argali Ovis ammon—responded to predation risk from shared predators with contrasting hunting modes—cursorial wolves Canis lupus and vertical-ambushing, stalking snow leopards Panthera uncia.

4. Contrasting risk posed by the two predators presented prey with clear trade-offs. Ibex selected for greater exposure to chronic long-term risk from snow leopards, and argali for wolves, in a nearly symmetrical manner that was predictable based on the compatibility of their respective traits. Yet, acute short-term risk from the same predator upended these long-term strategies, increasing each ungulates' exposure to risk from the alternate predator in a manner consistent with a scenario in which conflicting antipredator behaviours precipitate risk-enhancing MPEs and mediate predator facilitation. By contrast, reactive responses to wolves led ibex to reduce their exposure to risk from both predators—a risk-reducing MPE. Evidence of a similar reactive risk-reducing effect for argali vis-à-vis snow leopards was lacking.

5. Our results suggest that prey spatial responses and any resulting MPEs and prey-mediated interactions between predators are contingent on the interplay of hunting mode and escape tactics. Further investigation of interactions among various drivers of contingency in PREs will contribute to a more comprehensive understanding and improved forecasting of the ecological effects of predators.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1704  
Permanent link to this record
 

 
Author Thapa, K., Rayamajhi, S. pdf 
  Title Anti-predator strategies of blue sheep (naur) under varied predator compositions: a comparison of snow leopard-inhabited valleys with and without wolves in Nepal Type Journal Article
  Year 2023 Publication Wildlife Research Abbreviated Journal  
  Volume Issue Pages 1-9  
  Keywords Annapurna conservation area, antipredator behavior, blue sheep (Naur), predation, prey predator traits, snow leopard, trade-off, wolf.  
  Abstract In Nepal, naur are usually the staple wild prey for the snow leopard, a solitary stalker hunter, and in some cases, for the wolf who hunts in a pack. We assumed that naur would adapt their anti-predatory responses to the presence of chasing and ambushing predators in the Manang Valley, where there are snow leopards and wolves, and in the Nar Phu valley, an area where there is only the snow leopard.

Aims. The aim of this study was to determine if there were differences in anti-predator strategies (vigilance, habitat selection and escape terrain) of naur in two valleys over two seasons, spring and autumn.

Methods. In spring 2019, we conducted a reconnaissance survey on the status of the naur and its habitat in the Manang and Nar Phu valleys of the Annapurna Conservation Area, Nepal. In spring and autumn 2020 and 2021, we observed 360 focal naur individuals (180 individuals in each valley), using the vigilance behaviour methodology to examine the behaviour of the naur.

Key results. There was little difference in the size of the naur groups between the Manang and Nar Phu valleys. The naur were twice as vigilant in Manang (15%), where there are snow leopards and wolves, as they were in Nar Phu (9%), with only snow leopards. The distance from the naur to escape cover was significantly shorter in Manang than in Nar Phu valley. Naur used significantly more rolling terrain in Nar Phu than in Manang. Conclusions. The return of wolves to the Manang valley may have resulted in an increase in the level of naur vigilance. Most likely, the wolves in Manang have already had an effect on the female-to-young-ratio, and this effect will possibly have important consequences for the naur population, as well as at the ecosystem level in the future. Other key determining factors, such as the climate crisis and changes in local resources, could have a significant impact on the naur population, indicating the need for more research. Implications. The findings of this study would provide valuable baseline information for the design of a science-based conservation strategy for conservation managers and scientists on naur, snow leopards and wolves.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1732  
Permanent link to this record
 

 
Author Koju, N. P., Gosai, K. R., Bashyal, B., Byanju, R., Shrestha, A., Buzzard, P., Beisch, W. B., Khanal, L. pdf 
  Title Seasonal Prey Abundance and Food Plasticity of the Vulnerable Snow Leopard (Panthera uncia) in the Lapchi Valley, Nepal Himalayas Type Journal Article
  Year 2023 Publication Animals Abbreviated Journal  
  Volume 13 Issue 3182 Pages 1-16  
  Keywords apex predator; flagship species; micro-histology; niche overlap; prey preference  
  Abstract Conservation strategies for apex predators, like the snow leopard (Panthera uncia), depend on a robust understanding of their dietary preferences, prey abundance, and adaptability to changing ecological conditions. To address these critical conservation concerns, this study presents a comprehensive evidence on prey availability and preferences for snow leopards in the Lapchi Valley in the Nepal Himalayas from November 2021 to March 2023. Field data were collected through the installation of twenty-six camera traps at 16 strategically chosen locations, resulting in the recording of 1228 events of 19 mammalian species, including domesticated livestock. Simultaneously, the collection of twenty snow leopard scat samples over 3800 m above sea level allowed for a detailed dietary analysis. Photo capture rate index and biomass composition analysis were carried out and seasonal prey availability and consumption were statistically analyzed. A total of 16 potential prey species for the snow leopard were documented during the study period. Himalayan musk deer (Moschus leucogaster) was the most abundant prey species, but infrequent in the diet suggesting that are not the best bet prey for the snow leopards. Snow leopards were found to exhibit a diverse diet, consuming eleven prey species, with blue sheep (Pseudois nayaur) being their most consumed wild prey and horses as their preferred livestock. The Pianka’s index of dietary niche overlap between the summer and winter seasons were 0.576, suggesting a pronounced seasonal variation in food preference corroborating with the prey availability. The scarcity of larger preys in winter is compensated by small and meso-mammals in the diet, highlighting the snow leopard’s capacity for dietary plasticity in response to the variation in resource availability. This research suggests for the utilization of genetic tools to further explore snow leopard diet composition. Additionally, understanding transboundary movements and conducting population assessments will be imperative for the formulation of effective conservation strategies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1733  
Permanent link to this record
 

 
Author Adil, A. url 
  Title Status and Conservation of Snow Leopard in Afghanistan Type Conference Article
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages 35-38  
  Keywords Afghanistan; conservation; status; Palang-i-Barfi; Hindu-kush; Pamir; Ajar; park; parks; reserve; reserves; refuge; hunting; poaching; skin; fur; pelt; coat; distribution; ibex; Marco-Polo; sheep; markhor; predator; prey; protected-area; marco; polo; hindu; kush; browse; 2460  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher International Snow Leopard Trust Place of Publication Lahore, Pakistan Editor R.Jackson; A.Ahmad  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Full Text Available at URLTitle, Monographic: Eighth International Snow Leopard SymposiumPlace of Meeting: Islamabad, PakistanDate of Copyright: 1997 Approved no  
  Call Number SLN @ rana @ 298 Serial 34  
Permanent link to this record
 

 
Author Ahmad, A. url 
  Title Protection of Snow Leopards through Grazier Communities:Some Examples from WWF-Pakistan's Projects in the Northern Areas Type Conference Article
  Year 1994 Publication Abbreviated Journal  
  Volume Issue Pages 265-272  
  Keywords conservation; Pakistan; Wwf; world-wildlife-fund; livestock; herders; herder; status; parks; park; reserve; refuge; protected-area; Dir; chitral; predator; prey; grazier; pelt; fur; coat; skin; poaching; Khunjerab; Marco-Polo-sheep; ibex; markhor; hunting; browse; protected; area; sheep; Marco-Polo; 2040  
  Abstract Snow leopards occur near the snow line in northern Pakistan in the districts of Swat, Dir and Chitral of the Northwest Frontier Province (NWFP), Muzaffarabad district in Azad Kashmir and Gilgit and Baltistan districts in the Northern Areas. Although a number of protected areas are present in the form of national parks, wildlife sanctuaries and game reserves (Table 1) where legal protection is available to all wildlife species, including snow leopards, the status of this endangered species is not improving satisfactorily. The reasons are many and range from direct persecution by livestock owners to the less than strict management of protected areas.

Because of remote and inaccessible locations and lack of proper communication with local communities, government officials and nongovernmental organizations (NGOs) concerned with conservation find it difficult to obtain statistics on mortality of snow leopards. However, the killing of snow leopards is not uncommon. Because of the close and long-term association between local villagers and snow leopards, it is only through the support and cooperation of these peoples that protection of this endangered species can be assured against most of the existing threats. The effects of such cooperation has been clearly shown through some of the conservation projects of World Wildlife Fund (WWF) – Pakistan. Details of such projects and certain lessons that can be learned from these and similar projects are discussed in this paper.
 
  Address  
  Corporate Author Thesis  
  Publisher International Snow Leopard Trust Place of Publication Usa Editor J.L.Fox; D.Jizeng  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Full text available at URLTitle, Monographic: Proceedings of the Seventh International Snow Leopard SymposiumPlace of Meeting: ChinaDate of Copyright: 1994 Approved no  
  Call Number SLN @ rana @ 209 Serial 40  
Permanent link to this record
 

 
Author Ahmad, I.; Hunter, D.O.; Jackson, R. url 
  Title A Snow Leopard and Prey Species Survey in Khunjerab National Park, Pakistan Type Conference Article
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages 92-95  
  Keywords Slims; Islt; Wwf; predator; prey; Pakistan; Khunjerab; parks; park; reserve; reserves; refuge; Marco-Polo-sheep; blue-sheep; surveys; survey; transect; sighn; markings; marking; scrape; spray; ibex; tracks; pug marks; feces; livestock; kill; herder; herders; protected-area; blue; sheep; browse; international snow leopard trust; world wildlife fund; marco polo sheep; marco polo; pug; marks; protected area; protected areas; protected; area; areas; 2810  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Islt Place of Publication Lahore, Pakistan Editor R.Jackson; A.Ahmad  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Title, Monographic: Eighth International Snow Leopard SymposiumPlace of Meeting: Islamabad, PakistanDate of Copyright: 1997 Approved no  
  Call Number SLN @ rana @ 300 Serial 42  
Permanent link to this record
 

 
Author Ale S. url 
  Title Have snow leopards made a comeback to the Everest region of Nepal? Type Report
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages 1-21  
  Keywords snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; region; Nepal; Report; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; 1960; endangered; Sagarmatha; High; Himalaya; tourism; impact; establishment; national; national park; National-park; park; 1980; area; Tibet; surveys; survey; status; Cats; cat; prey; research; project; sign; transects; transect; length; valley; Response; hunting; recovery; Himalayan; tahr; density; densities; range; pugmarks; sighting; 60; study; population; predators; predator; structure; prey species; prey-species; species; populations; mortality; effects; predation; population dynamics  
  Abstract In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Progress report for the International Snow Leopard Trust Small Grants Program. Approved no  
  Call Number SLN @ rana @ 1063 Serial 50  
Permanent link to this record
 

 
Author Ale, S.; Whelan, C. url 
  Title Reappraisal of the role of big, fierce predators Type Miscellaneous
  Year 2008 Publication Biodiversity Conservation Abbreviated Journal  
  Volume Issue Pages 685-690  
  Keywords Biodiversity ú Conservation ú Costs of predation ú Indirect effects ú Non-lethal effects ú Predators ú Top-down control; big; predators; predator  
  Abstract The suggestion in the early 20th century that top predators were a necessary component of ecosystems because they hold herbivore populations in check and promote biodiversity was at Wrst accepted and then largely rejected. With the advent of Evolutionary Ecology and a more full appreciation of direct and indirect effects of top predators, this role of top predators is again gaining acceptance. The previous views were predicated upon lethal effects of predators but largely overlooked their non-lethal effects. We suggest that

conceptual advances coupled with an increased use of experiments have convincingly demonstrated that prey experience costs that transcend the obvious cost of death. Prey species use adaptive behaviours to avoid predators, and these behaviours are not cost-free. With predation risk, prey species greatly restrict their use of available habitats and consumption of available food resources. Effects of top predators consequently cascade down to the trophic levels below them. Top predators, the biggies, are thus both the targets of and the means for conservation at the landscape scale.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 885 Serial 52  
Permanent link to this record
 

 
Author Ale, S.; Brown, J. url 
  Title The contingencies of group size and vigilance Type Miscellaneous
  Year 2007 Publication Evolutionary Ecology Research, Abbreviated Journal  
  Volume 9 Issue Pages 1263-1276  
  Keywords attraction effect,contingency,dilution effect,fitness,group-size effect,many-eyes effect,predation risk,vigilance behaviour; predation; decline; potential; predators; predator; feeding; Animals; Animal; use; food; effects; Relationship; behaviour; methods; game; Interactions; interaction; factor; value; Energy  
  Abstract Background: Predation risk declines non-linearly with one's own vigilance and the vigilance of others in the group (the 'many-eyes' effect). Furthermore, as group size increases, the individual's risk of predation may decline through dilution with more potential victims, but may increase if larger groups attract more predators. These are known, respectively, as the dilution effect and the attraction effect.

Assumptions: Feeding animals use vigilance to trade-off food and safety. Net feeding rate declines linearly with vigilance.

Question: How do the many-eyes, dilution, and attraction effects interact to influence the relationship between group size and vigilance behaviour?

Mathematical methods: We use game theory and the fitness-generating function to determine the ESS level of vigilance of an individual within a group.

Predictions: Vigilance decreases with group size as a consequence of the many-eyes and dilution effects but increases with group size as a consequence of the attraction effect, when they act independent of each other. Their synergetic effects on vigilance depend upon the relative strengths of each and their interactions. Regardless, the influence of other factors on vigilance – such as encounter rate with predators, predator lethality, marginal value of energy, and value of vigilance – decline with group size.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 886 Serial 53  
Permanent link to this record
 

 
Author Lydekker, R. url 
  Title The Game Animals of India, Burma, Malaya, and Tibet Type Book Chapter
  Year 1907 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords prey; predators; game; India; Burma; Malaya; Tibet; browse; 1930  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Rowland Ward Place of Publication London Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ProCite field [12]: (1907) Approved no  
  Call Number SLN @ rana @ 9 Serial 630  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: