Jackson, R. (1992). SSC Plan for Snow Leopard.
|
Farrington, J. (2005). A Report on Protected Areas, Biodiversity, and Conservation in the Kyrgyzstan Tian Shan with Brief Notes on the Kyrgyzstan Pamir-Alai and the Tian Shan Mountains of Kazakhstan, Uzbekistan, and China. Ph.D. thesis, , Kyrgyzstan.
Abstract: Kyrgyzstan is a land of towering mountains, glaciers, rushing streams, wildflowercovered meadows, forests, snow leopards, soaring eagles, and yurt-dwelling nomads. The entire nation lies astride the Tian Shan1, Chinese for “Heavenly Mountains”, one of the world's highest mountain ranges, which is 7439 m (24,400 ft) in elevation at its highest point. The nation is the second smallest of the former Soviet Central Asian republics. In
spite of Kyrgyzstan's diverse wildlife and stunning natural beauty, the nation remains little known, and, as yet, still on the frontier of international conservation efforts. The following report is the product of 12 months of research into the state of conservation and land-use in Kyrgyzstan. This effort was funded by the Fulbright Commission of the U.S. State Department, and represents the most recent findings of the author's personal environmental journey through Inner Asia, which began in 1999. When I first started my preliminary research for this project, I was extremely surprised to learn that, even though the Tian Shan Range has tremendous ecological significance for conservation efforts in middle Asia, there wasn't a single major international conservation organization with an office in the former Soviet Central Asian republics. Even more surprising was how little awareness there is of conservation issues in the Tian Shan region amongst conservation workers in neighboring areas who are attempting to preserve similar species assemblages and ecosystems to those found in the Tian Shan. Given this lack of awareness, and the great potential for the international community to make a positive contribution towards improving the current state of biodiversity conservation in Kyrgyzstan and Central Asia, I have summarized my findings on protected areas and conservation in Kyrgyzstan and the Tian Shan of Kazakhstan, Uzbekistan, and Xinjiang in the chapters below. The report begins with some brief background information on geography and society in the Kyrgyz Republic, followed by an overview of biodiversity and the state of conservation in the nation, which at the present time closely parallels the state of conservation in the other former Soviet Central Asian republics. Part IV of the report provides a catalog of all major protected areas in Kyrgyzstan and the other Tian Shan nations, followed by a list of sites in Kyrgyzstan that are as yet unprotected but merit protection. In the appendices the reader will find fairly comprehensive species lists of flora and fauna found in the Kyrgyz Republic, including lists of mammals, birds, fish, reptiles, amphibians, trees and shrubs, wildflowers, and endemic plants. In addition, a
draft paper on the history and current practice of pastoral nomadism in Kyrgyzstan has been included in Appendix A. While the research emphasis for this study was on eastern Kyrgyzstan, over the course of the study the author did have the opportunity to make brief journeys to southern Kyrgyzstan, Uzbekistan, Kazakhstan, and Xinjiang. While falling short of being a definitive survey of protected areas of the Tian Shan, the informational review which
follows is the first attempt at bringing the details of conservation efforts throughout the entire Tian Shan Range together in one place. It is hoped that this summary of biodiversity and conservation in the Tian Shan will generate interest in the region amongst conservationists, and help increase efforts to protect this surprisingly unknown range that forms an island of meadows, rivers, lakes, and forests in the arid heart of Asia.
|
International Snow Leopard Trust. (2000). Snow Leopard News Spring 2000. Seattle, Wa: Islt.
|
Jackson, R., Hunter, D., & Emmerich, C. (1997). SLIMS: An Information Management System for Promoting the Conservation of Snow Leopards and Biodiversity in the Mountains of Central Asia. In R.Jackson, & A.Ahmad (Eds.), (pp. 75–91). Lahore, Pakistan: Islt.
|
Ahmad, I., Hunter, D. O., & Jackson, R. (1997). A Snow Leopard and Prey Species Survey in Khunjerab National Park, Pakistan. In R.Jackson, & A.Ahmad (Eds.), (pp. 92–95). Lahore, Pakistan: Islt.
|
Jackson, R., & Fox, J. L. (1997). Snow Leopard Conservation: Accomplishments and Research Priorities. In R.Jackson, & A.Ahmad (Eds.), (pp. 128–144). Pakistan: Islt.
|
Jackson, R. (1995). Third Slims Workshop held in Mongolia (Vol. xiii). Seattle: Islt.
|
Jackson, R., & Fox, J. L. (2000). Report on Fifth Slims Training Workshop (Nepal) (Vol. xvii). Seattle: International Snow Leopard Trust.
Abstract: Nepal's snow leopards (Uncia uncia) are mostly found along the northern border with Tibet (China). The largest populations are in Dolpa, Mugu, Manang, and Myagdi Districts. Potential habitat totals about 30,000 square kilometers. Numbers are estimated at 300-500, but surveys are urgently needed to confirm this rough guess. Like elsewhere, the primary threats center on poaching, depletion of natural prey, livestock depredation and resultant retributive killing of snow leopards by herders, and the lack of public awareness and support for conserving snow leoaprds, especially among local herders.
|
Korablev, M. P., Poyarkov, A. D., Karnaukhov, A. S., Zvychaynaya, E. Y., Kuksin, A. N., Malykh, S. V., Istomov, S. V., Spitsyn, S. V., Aleksandrov, D. Y., Hernandez-Blanco, J. A., Munkhtsog, B., Munkhtogtokh, O., Putintsev, N. I., Vereshchagin, A. S., Becmurody, A., Afzunov, S., Rozhnov, V. V. (2021). Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. Conservation Genetics, .
Abstract: The snow leopard (Panthera uncia Schreber, 1776) population in Russia and Mongolia is situated at the northern edge of the range, where instability of ecological conditions and of prey availability may serve as prerequisites for demographic instability and, consequently, for reducing the genetic diversity. Moreover, this northern area of the species distribution is connected with the western and central parts by only a few small fragments of potential habitats in the Tian-Shan spurs in China and Kazakhstan. Given this structure of the range, the restriction of gene flow between the northern and other regions of snow leopard distribution can be expected. Under these conditions, data on population genetics would be extremely important for assessment of genetic diversity, population structure and gene flow both at regional and large-scale level. To investigate large-scale and fine-grain population structure and levels of genetic diversity we analyzed 108 snow leopards identified from noninvasively collected scat samples from Russia and Mongolia (the northern part of the range) as well as from Kyrgyzstan and Tajikistan (the western part of the range) using panel of eight polymorphic microsatellites. We found low to moderate levels of genetic diversity in the studied populations. Among local habitats, the highest heterozygosity and allelic richness were recorded in Kyrgyzstan (He = 0.66 ± 0.03, Ho = 0.70 ± 0.04, Ar = 3.17) whereas the lowest diversity was found in a periphery subpopulation in Buryatia Republic of Russia (He = 0.41 ± 0.12, Ho = 0.29 ± 0.05, Ar = 2.33). In general, snow leopards from the western range exhibit greater genetic diversity (He = 0.68 ± 0.04, Ho = 0.66 ± 0.03, Ar = 4.95) compared to those from the northern range (He = 0.60 ± 0.06, Ho = 0.49 ± 0.02, Ar = 4.45). In addition, we have identified signs of fragmentation in the northern habitat, which have led to significant genetic divergence between subpopulations in Russia. Multiple analyses of genetic structure support considerable genetic differentiation between the northern and western range parts, which may testify to subspecies subdivision of snow leopards from these regions. The observed patterns of genetic structure are evidence for delineation of several management units within the studied populations, requiring individual approaches for conservation initiatives, particularly related to translocation events. The causes for the revealed patterns of genetic structure and levels of genetic diversity are discussed.
|
Ferguson, D. A. (1997). International Cooperation for Snow Leopard and Biodiversity Conservation: The Government Perspective. In R.Jackson, & A.Ahmad (Eds.), (pp. 178–193). Lahore, Pakistan: Islt.
|