toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Farrington, J., Tsering, D. url 
  Title Snow leopard distribution in the Chang Tang region of Tibet, China Type Journal Article
  Year 2020 Publication Global Ecology and Conservation Abbreviated Journal  
  Volume 23 Issue Pages  
  Keywords (up)  
  Abstract In 2006 and 2007, the authors conducted human-wildlife conflict surveys in the Tibet Autonomous Region’s (TAR) Shainza, Nyima, and Tsonyi Counties, located in the TAR’s remote Chang Tang region. At this time, prior knowledge of the snow leopard in this vast 700,000 km2 region was limited to just eight firsthand snow leopard sign and conflict location records and 15 secondhand records. These surveys revealed a previously undocumented and growing problem of human-snow leopard conflict. The 2007 survey also yielded 39 new snow leopard conflict incident locations and 24 new snow leopard sign locations. Next, snow leopard telephone interviews and mapping exercises were conducted with Tibet Forestry Bureau staff that yielded an additional 63 and 144 new snow leopard conflict and sighting location records, respectively. These 270 new snow leopard location records, together with 39 records collected by other observers from 1988 to 2009, were compiled into a snow leopard distribution map for the Chang Tang. This effort greatly expanded knowledge of the snow leopard’s distribution in this region which remains one of the least understood of the snow leopard’s key range areas. New knowledge gained on snow leopard distribution in the Chang Tang through this exercise will help identify human-snow leopard conflict hot spots and inform design of human-snow leopard conflict mitigation and conservation strategies for northwest Tibet. Nevertheless, extensive additional field verification work will be required to definitively delineate snow leopard distribution in the Chang Tang. Importantly, since 2006, a number of major transportation infrastructure projects have made the Chang Tang more accessible, including paving of highways, new railroads, and new airports. This has led to a greatly increased number of tourists visiting western Tibet, particularly Mt. Kailash and Lake Manasarovar. At the same time, large areas of the Chang Tang have been fenced for livestock pastures as part of government initiatives to allocate pasturelands to individual families. All three of these developments have a large potential to cause disturbance to snow leopards and their prey species, including by hindering their movements and degrading their habitat. Therefore, future conservation measures in the Chang Tang will need to insure that development activities and the growing number of visitors to the Chang Tang do not adversely affect the distribution of snow leopards and their prey species or directly degrade their habitat.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1601  
Permanent link to this record
 

 
Author Hameed, S., Din, J. U., Ali, H., Kabir, M., Younas, M., Rehman, E. U., Bari, F., Hao, W., Bischof, R., Nawaz, M. A. url 
  Title Identifying priority landscapes for conservation of snow leopards in Pakistan Type Journal Article
  Year 2020 Publication Plos One Abbreviated Journal  
  Volume Issue Pages 1-20  
  Keywords (up)  
  Abstract Pakistan’s total estimated snow leopard habitat is about

80,000 km2 of which about half is considered prime habitat. However,

this preliminary demarcation was not always in close agreement with the

actual distribution the discrepancy may be huge at the local and

regional level. Recent technological developments like camera trapping

and molecular genetics allow for collecting reliable presence records

that could be used to construct realistic species distribution based on

empirical data and advanced mathematical approaches like MaxEnt. The

current study followed this approach to construct an accurate

distribution of the species in Pakistan. Moreover, movement corridors,

among different landscapes, were also identified through circuit theory.

The probability of habitat suitability, generated from 98 presence

points and 11 environmental variables, scored the snow leopard’s assumed

range in Pakistan, from 0 to 0.97. A large portion of the known range

represented low-quality habitat, including areas in lower Chitral, Swat,

Astore, and Kashmir. Conversely, Khunjerab, Misgar, Chapursan, Qurumber,

Broghil, and Central Karakoram represented high-quality habitats.

Variables with higher contributions in the MaxEnt model were

precipitation during the driest month (34%), annual mean temperature

(19.5%), mean diurnal range of temperature (9.8%), annual precipitation

(9.4%), and river density (9.2). The model was validated through

receiver operating characteristic (ROC) plots and defined thresholds.

The average test AUC in Maxent for the replicate runs was 0.933 while

the value of AUC by ROC curve calculated at 0.15 threshold was 1.00.

These validation tests suggested a good model fit and strong predictive

power. The connectivity analysis revealed that the population in the

Hindukush landscape appears to be more connected with the population in

Afghani- stan as compared to other populations in Pakistan. Similarly,

the Pamir-Karakoram population is better connected with China and

Tajikistan, while the Himalayan population was connected with the

population in India. Based on our findings we propose three model

landscapes to be considered under the Global Snow Leopard Ecosystem

Protection Program (GSLEP) agenda as regional priority areas, to

safeguard the future of the snow leopard in Pakistan and the region.

These landscapes fall within mountain ranges of the Himalaya, Hindu Kush

and Karakoram-Pamir, respectively. We also identified gaps in the

existing protected areas network and suggest new protected areas in

Chitral and Gilgit-Baltistan to protect critical habitats of snow

leopard in Pakistan.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1617  
Permanent link to this record
 

 
Author Shrestha, B., Kindlmann, P. url 
  Title Implications of landscape genetics and connectivity of snow leopard in the Nepalese Himalayas for its conservation. Type Scientific Report
  Year 2020 Publication Nature Research Abbreviated Journal  
  Volume 10 Issue 19853 Pages 1-11  
  Keywords (up)  
  Abstract The snow leopard is one of the most endangered large mammals.

Its population, already low, is declining, most likely due to the

consequences of human activity, including a reduction in the size and

number of suitable habitats. With climate change, habitat loss may

escalate, because of an upward shift in the tree line and concomitant

loss of the alpine zone, where the snow leopard lives. Migration between

suitable areas, therefore, is important because a decline in abundance

in these areas may result in inbreeding, fragmentation of populations,

reduction in genetic variation due to habitat fragmentation, loss of

connectivity, bottlenecks or genetic drift. Here we use our data

collected in Nepal to determine the areas suitable for snow leopards, by

using habitat suitability maps, and describe the genetic structure of

the snow leopard within and between these areas. We also determine the

influence of landscape features on the genetic structure of its

populations and reveal corridors connecting suitable areas. We conclude

that it is necessary to protect these natural corridors to maintain the

possibility of snow leopards' migration between suitable areas, which

will enable gene flow between the diminishing populations and thus

maintain a viable metapopulation of snow leopards.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1628  
Permanent link to this record
 

 
Author Pal, R., Bhattacharya, T., Sathyakumar, S. url 
  Title Woolly flying squirrel Eupetaurus Cinereus: A new addition to the diet of snow leopard Panthera Uncia Type Short Note
  Year 2020 Publication Journal Bombay Natural History Society Abbreviated Journal  
  Volume 117 Issue Pages  
  Keywords (up)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1606  
Permanent link to this record
 

 
Author Johansson, O., Samelius, G., Wikberg, E, Chapron, G., Mishra, C., Low, M url 
  Title Identification errors in camera- trap studies result in systematic population overestimation Type Journal Article
  Year 2020 Publication Scientific Reports Abbreviated Journal  
  Volume 10 Issue 6393 Pages 1-10  
  Keywords (up)  
  Abstract Reliable assessments of animal abundance are key for successful conservation of endangered species. For elusive animals with individually-unique markings, camera-trap surveys are a benchmark standard for estimating local and global population abundance. Central to the reliability of resulting abundance estimates is the assumption that individuals are accurately identified from photographic captures. To quantify the risk of individual misidentification and its impact on population abundance estimates we performed an experiment under controlled conditions in which 16 captive snow leopards (Panthera uncia) were camera-trapped on 40 occasions and eight observers independently identified individuals and recaptures. Observers misclassified 12.5% of all capture occasions, resulting in systematically inflated population abundance estimates on average by one third (mean ± SD = 35 ± 21%). Our results show that identifying individually-unique individuals from camera-trap photos may not be as reliable as previously believed, implying that elusive and endangered species could be less abundant than current estimates indicate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1496  
Permanent link to this record
 

 
Author Johansson, O., Ausilio, G., Low, M., Lkhagvajav, P., Weckworth, B., Sharma, K. url 
  Title The timing of breeding and independence for snow leopard females and their cubs. Type Journal Article
  Year 2020 Publication Mammalian Biology Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) Age of independence; Life-history trade-offs; Panthera uncia; Parental care; Pre-dispersal behavior; Separation; Subadult  
  Abstract Significant knowledge gaps persist on snow leopard demography

and reproductive behavior. From a GPS-collared population in Mongolia,

we estimated the timing of mating, parturition and independence. Based

on three mother–cub pairs, we describe the separation phase of the cub

from its mother as it gains independence. Snow leopards mated from

January–March and gave birth from April–June. Cubs remained with their

mother until their second winter (20–22 months of age) when cubs started

showing movements away from their mother for days at a time. This

initiation of independence appeared to coincide with their mother mating

with the territorial male. Two female cubs remained in their mothers’

territory for several months after initial separation, whereas the male

cub quickly dispersed. By comparing the relationship between body size

and age of independence across 11 solitary, medium-to-large felid

species, it was clear that snow leopards have a delayed timing of

separation compared to other species. We suggest this may be related to

their mating behavior and the difficulty of the habitat and prey capture

for juvenile snow leopards. Our results, while limited, provide

empirical estimates for understanding snow leopard ecology and for

parameterizing population models.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1613  
Permanent link to this record
 

 
Author Filla, M., Lama, R. P., Ghale, T. R., Signer, J., Filla, T., Aryal, R. R., Heurich, M., Waltert, M., Balkenhol, N., Khorozyan, I. pdf 
  Title In the shadows of snow leopards and the Himalayas: density and habitat selection of blue sheep in Manang, Nepal Type Journal Article
  Year 2020 Publication Ecology and Evolution Abbreviated Journal  
  Volume 2021 Issue 11 Pages 108-122  
  Keywords (up) Annapurna Conservation Area, bharal, Panthera uncia, predator-prey, Pseudois nayaur  
  Abstract There is a growing agreement that conservation needs to be proactive and pay increased attention to common species and to the threats they face. The blue sheep (Pseudois nayaur) plays a key ecological role in sensitive high-altitude ecosystems of Central Asia and is among the main prey species for the globally vulnerable snow leopard (Panthera uncia). As the blue sheep has been increasingly exposed to human pressures, it is vital to estimate its population dynamics, protect the key populations, identify important habitats, and secure a balance between conservation and local livelihoods. We conducted a study in Manang, Annapurna Conservation Area (Nepal), to survey blue sheep on 60 transects in spring (127.9 km) and 61 transects in autumn (134.7 km) of 2019, estimate their minimum densities from total counts, compare these densities with previous estimates, and assess blue sheep habitat selection by the application of generalized additive models (GAMs). Total counts yielded minimum density estimates of 6.0–7.7 and 6.9–7.8 individuals/km2 in spring and autumn, respectively, which are relatively high compared to other areas. Elevation and, to a lesser extent, land cover indicated by the normalized difference vegetation index (NDVI) strongly affected habitat selection by blue sheep, whereas the effects of anthropogenic variables were insignificant. Animals were found mainly in habitats associated with grasslands and shrublands at elevations between 4,200 and 4,700 m. We show that the blue sheep population size in Manang has been largely maintained over the past three decades, indicating the success of the integrated conservation and development efforts in this area. Considering a strong dependence of snow leopards on blue sheep, these findings give hope for the long-term conservation of this big cat in Manang. We suggest that long-term population monitoring and a better understanding of blue sheep–livestock interactions are crucial to maintain healthy populations of blue sheep and, as a consequence, of snow leopards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1683  
Permanent link to this record
 

 
Author Bagchi, S., Sharma, R. K., Bhatnagar, Y.V. url 
  Title Change in snow leopard predation on livestock after revival of wild prey in the Trans-Himalaya Type Journal Article
  Year 2020 Publication Wildlife Biology Abbreviated Journal  
  Volume Issue Pages 1-11  
  Keywords (up) arid ecosystems, diet analysis, human-wildlife conflict, Panthera, predator, rangeland  
  Abstract Human–wildlife conflict arising from livestock-losses to large carnivores is an important challenge faced by conservation. Theory of prey–predator interactions suggests that revival of wild prey populations can reduce predator’s dependence on livestock in multiple-use landscapes. We explore whether 10-years of conservation efforts to revive wild prey could reduce snow leopard’s Panthera uncia consumption of livestock in the coupled human-and-natural Trans-Himalayan ecosystem of northern India. Starting in 2001, concerted conservation efforts at one site (intervention) attempted recovery of wild- prey populations by creating livestock-free reserves, accompanied with other incentives (e.g. insurance, vigilant herding). Another site, 50km away, was monitored as status quo without any interventions. Prey remains in snow leopard scats were examined periodically at five-year intervals between 2002 and 2012 to determine any temporal shift in diet at both sites to evaluate the effectiveness of conservation interventions. Consumption of livestock increased at the status quo site, while it decreased at the intervention-site. At the intervention-site, livestock-consumption reduced during 2002–2007 (by 17%, p = 0.06); this effect was sustained during the next five-year interval, and it was accompanied by a persistent increase in wild prey populations. Here we also noted increased predator populations, likely due to immigration into the study area. Despite the increase in the predator population, there was no increase in livestock-consumption. In contrast, under status quo, dependence on livestock increased during both five-year intervals (by 7%, p=0.08, and by 16%, p=0.01, respectively). These contrasts between the trajectories of the two sites suggest that livestock-loss can potentially be reduced through the revival of wild prey. Further, accommodating counter-factual scenarios may be an important step to infer whether conservation efforts achieve their targets, or not.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1623  
Permanent link to this record
 

 
Author Singh, R., Krausman, P. R., Pandey, P., Maheshwari, A., Rawal, R. S., Sharma, S., Shekhar, S. url 
  Title Predicting Habitat Suitability of Snow Leopards in the Western Himalayan Mountains, India Type Journal Article
  Year 2020 Publication Biology bulletin Abbreviated Journal  
  Volume 47 Issue 6 Pages 655-664  
  Keywords (up) biogeographic distribution, climate, endangered cat, MaxEnt, snow leopard  
  Abstract The population of snow leopard (Panthera uncia) is declining

across their range, due to poaching, habitat fragmentation, retaliatory

killing, and a decrease of wild prey species. Obtaining information on

rare and cryptic predators living in remote and rugged terrain is

important for making conservation and management strategies. We used the

Maximum Entropy (MaxEnt) ecological niche modeling framework to predict

the potential habitat of snow leopards across the western Himalayan

region, India. The model was developed using 34 spatial species

occurrence points in the western Himalaya, and 26 parameters including,

prey species distribution, temperature, precipitation, land use and land

cover (LULC), slope, aspect, terrain ruggedness and altitude. Thirteen

variables contributed 98.6% towards predicting the distribution of snow

leopards. The area under the curve (AUC) score was high (0.994) for the

training data from our model, which indicates pre- dictive ability of

the model. The model predicted that there was 42432 km2 of potential

habitat for snow leop- ards in the western Himalaya region. Protected

status was available for 11247 km2 (26.5%), but the other 31185 km2

(73.5%) of potential habitat did not have any protected status. Thus,

our approach is useful for predicting the distribution and suitable

habitats and can focus field surveys in selected areas to save

resources, increase survey success, and improve conservation efforts for

snow leopards.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1629  
Permanent link to this record
 

 
Author Sharma, K., Fiechter, M., George, T., Young, J., Alexander, J. S., Bijoor, Suryawanshi, K., Mishra, C. url 
  Title Conservation and people: Towards an ethical code of conduct for the use of camera traps in wildlife research Type Journal Article
  Year 2020 Publication Ecological Solutions and Evidence Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords (up) camera trap, code of conduct, ethics, human rights, law, PARTNERS principles for community- based conservation, privacy, snow leopard  
  Abstract 1. Camera trapping is a widely employed tool in wildlife

research, used to estimate animal abundances, understand animal

movement, assess species richness and under- stand animal behaviour. In

addition to images of wild animals, research cameras often record human

images, inadvertently capturing behaviours ranging from innocuous

actions to potentially serious crimes.

2. With the increasing use of camera traps, there is an urgent need to

reflect on how researchers should deal with human images caught on

cameras. On the one hand, it is important to respect the privacy of

individuals caught on cameras, while, on the other hand, there is a

larger public duty to report illegal activity. This creates ethical

dilemmas for researchers.

3. Here, based on our camera-trap research on snow leopards Panthera

uncia, we outline a general code of conduct to help improve the practice

of camera trap based research and help researchers better navigate the

ethical-legal tightrope of this important research tool.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1626  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: