toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Koju. N. P, , Bashyal, B., Pandey, B. P., Shah, S. N., Thami, S. ,Bleisch, W. V. url 
  Title First camera-trap record of the snow leopard Panthera uncia in Gaurishankar Conservation Area, Nepal Type Journal Article
  Year 2020 Publication Oryx Abbreviated Journal  
  Volume Issue (down) Pages 1-4  
  Keywords Camera trap, corridor, Gaurishankar Conser- vation Area, Nepal, Panthera uncia, prey abundance, transboundary, snow leopard  
  Abstract The snow leopard Panthera uncia is the flagship species of the high mountains of the Himalayas. There is po- tentially continuous habitat for the snow leopard along the northern border of Nepal, but there is a gap in information about the snow leopard in Gaurishankar Conservation Area. Previous spatial analysis has suggested that the Lamabagar area in this Conservation Area could serve as a transbound- ary corridor for snow leopards, and that the area may con- nect local populations, creating a metapopulation. However, there has been no visual confirmation of the species in Lamabagar. We set !! infrared camera traps for " months in Lapchi Village of Gaurishankar Conservation Area, where blue sheep Pseudois nayaur, musk deer Moschus leucogaster and Himalayan tahr Hemitragus jemlahicus, all snow leopard prey species, had been observed. In November #$!% at &,!$$ m, ' km south-west of Lapchi Village, one camera recorded three images of a snow leopard, the first photographic evidence of the species in the Conservation Area. Sixteen other species of mammals were also recorded. Camera-trap records and sightings indicated a high abun- dance of Himalayan tahr, blue sheep and musk deer. Lapchi Village may be a potentially important corridor for snow leopard movement between the east and west of Nepal and northwards to Quomolongma National Park in China. However, plans for development in the region present in- creasing threats to this corridor. We recommend develop- ment of a transboundary conservation strategy for snow leopard conservation in this region, with participation of Nepal, China and international agencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1622  
Permanent link to this record
 

 
Author Durbach, I., Borchers, D., Sutherland, C., Sharma, K. url 
  Title Fast, flexible alternatives to regular grid designs for spatial capture–recapture. Type Research Article
  Year 2020 Publication Methods in Ecology and Evolution Abbreviated Journal  
  Volume Issue (down) Pages 1-13  
  Keywords camera trap, population ecology,sampling, spatial capture-recapture, surveys  
  Abstract Spatial capture–recapture (SCR) methods use the location of

detectors (camera traps, hair snares and live-capture traps) and the

locations at which animals were detected (their spatial capture

histories) to estimate animal density. Despite the often large expense

and effort involved in placing detectors in a landscape, there has been

relatively little work on how detectors should be located. A natural

criterion is to place traps so as to maximize the precision of density

estimators, but the lack of a closed-form expression for precision has

made optimizing this criterion computationally demanding. 2. Recent

results by Efford and Boulanger (2019) show that precision can be well

approximated by a function of the expected number of detected

individuals and expected number of recapture events, both of which can

be evaluated at low computational cost. We use these results to develop

a method for obtaining survey designs that optimize this approximate

precision for SCR studies using count or binary proximity detectors, or

multi-catch traps. 3. We show how the basic design protocol can be

extended to incorporate spatially varying distributions of activity

centres and animal detectability. We illustrate our approach by

simulating from a camera trap study of snow leopards in Mongolia and

comparing estimates from our designs to those generated by regular or

optimized grid designs. Optimizing detector placement increased the

number of detected individuals and recaptures, but this did not always

lead to more precise density estimators due to less precise estimation

of the effective sampling area. In most cases, the precision of density

estimators was comparable to that obtained with grid designs, with

improvement in some scenarios where approximate CV(¬D) < 20% and density

varied spatially. 4. Designs generated using our approach are

transparent and statistically grounded. They can be produced for survey

regions of any shape, adapt to known information about animal density

and detectability, and are potentially easier and less costly to

implement. We recommend their use as good, flexible candidate designs

for SCR surveys when reasonable knowledge of model parameters exists. We

provide software for researchers to construct their own designs, in the

form of updates to design functions in the r package oSCR.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1618  
Permanent link to this record
 

 
Author Ming, M. url 
  Title Camera trapping on snow leopards in the Muzat Valley, Reserve, Xinjiang, P.R. China (October-December 2005) Type Report
  Year 2006 Publication Abbreviated Journal  
  Volume Issue (down) Pages 1-5  
  Keywords behavior; camera trapping; China; feces; ibex; infrared trapping cameras; livestock; population size; snow leopard; Tomur; transect; Xinjiang  
  Abstract The main purpose of this work was to study the use of infrared trapping cameras to estimate Snow Leopard population size in a specific study area. This is the first time a study of this nature has taken place in China. During 71 days of field work, a total of 36 cameras were set up in Muzat Valley adjacent to the Tomur Nature Reserve in Xinjiang Province. We expended approximately 2094 trap days total. At least 32 pictures of Snow Leopards, 22 pictures of other wild species and 72 pictures of livestock were taken in the Muzat Valley. Meanwhile, 20 transects were run and 31 feces sample were collected. We also observed the behavior of ibex for 77.3 hours and found a total of approximately 264 ibexes in the research area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 970 Serial 682  
Permanent link to this record
 

 
Author Xu, A.; Jiang, Z.; Li, C.; Guo, J.; Da, S.; Cui, Q.; Yu, S.; Wu, G. url 
  Title Status and conservation of the snow leopard Panthera uncia in the Gouli Region, Kunlun Mountains, China Type Miscellaneous
  Year 2008 Publication Oryx Abbreviated Journal  
  Volume 42 Issue (down) Pages 460-463  
  Keywords Camera trapping,China,human-wildlife conflict,Kunlun Mountains,Panthera uncia,snow leopard,trace.  
  Abstract The elusive snow leopard Panthera unica is a rare and little studied species in China. Over 1 March-15 May 2006 we conducted a survey for the snow leopard in the Gouli Region, East Burhanbuda Mountain, Kunlun Mountains, Qinghai Province, China, in an area of c. 300 km2 at altitudes of 4,000-4,700 m. We surveyed 29 linear transects with a total length of c. 440 km, and located a total of 72 traces (pug marks, scrapes and urine marks) of snow leopard along four of the transects. We obtained eight photographs of snow leopard from four of six camera traps. We also recorded 1,369 blue sheep, 156 Tibetan gazelles, 47 argali, 37 red deer and one male white-lipped deer. We evaluated human attitudes towards snow leopard by interviewing the heads of 27 of the 30 Tibetan households living in the study area. These local people did not consider that snow leopard is the main predator of their livestock, and thus there is little retaliatory killing. Prospects for the conservation of snow leopard in this area therefore appear to be good. We analysed the potential threats to the species and propose the establishment of a protected area for managing snow leopard and the fragile alpine ecosystem of this region. (c) 2008 Fauna & Flora International.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 900 Serial 1032  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: