|
Limbu, R. (1999). Snow Leopards could save Mountain Biodiversity.
Abstract: The woman in the picture is wrapped in a luxurious fur coat and hat. The distinctly spotted pelt is that of a snow leopard -- that elusive and endangered species found in the mountains of central and south Asia. “A coat like that would probably cost $60,000-$80,000 in a big shop,” said Dr Rodney Jackson at a presentation he made recently on the status of his favorite subject. “Fortunately, changing norms of the fashion world and increasing consumer awareness (mean that) fewer people are wearing snow leopard pelts,” noted Dr Jackson, Conservation Director of the International Snow Leopard Trust. Still, the threat of extinction persists, he warns. “The demand for fur may have gone down but the demand for bones and body parts as marketable items for use in traditional Chinese medicine has gone up.” Further, conflict with humans is rapidly becoming the single most important issue, he said.
|
|
|
Mishra, C., Allen, P., McCarthy, T., Madhusudan, M. D., Agvaantserengiin, B., & Prins H. (2003). The role of incentive programs in conserving the snow leopard (Vol. 17).
Abstract: Pastoralists and their livestock share much of the habitat of the snow leopard (Uncia uncia) across south and central Asia. The levels of livestock predation by the snow leopard and other carnivores are high, and retaliatory killing by the herders is a direct threat to carnivore populations. Depletion of wild prey by poaching and competition from livestock also poses an indirect threat to the region's carnivores. Conservationists working in these underdeveloped areas that face serious economic damage from livestock losses have turned to incentive programs to motivate local communities to protect carnivores. We describe a pilot incentive program in India that aims to offset losses due to livestock predation and to enhance wild prey density by creating livestock-free areas on common land. We also describe how income generation from handicrafts in Mongolia is helping curtail poaching and retaliatory killing of snow leopards. However, initiatives to offset the costs of living with carnivores and to make conservation beneficial to affected people have thus far been small, isolated, and heavily subsidized. Making these initiatives more comprehensive, expanding their coverage, and internalizing their costs are future challenged for the conservation of large carnivores such as the snow leopard.
|
|
|
Namgay, K. (2007). Snow Leopard and Prey Population Conservation in Bhutan.
Abstract: Snow leopard conservation work in Bhutan dates back to 1999 and 2000 when the International Snow Leopard Trust-in collaboration with the Royal Government of Bhutan and World Wildlife Fund-initiated a training workshop. More than 30 government staff were trained in SLIMS survey techniques. As a part of the training exercise, a preliminary survey on snow leopard was also carried out using the SLIMS methods in Jigme Dorji Wangchuck National Park. Based on the survey results, we estimated there was a population of 100 snow leopards in the wild and 10,000 km2 of habitat. In 2005, World Wildlife Fund (WWF) organized the WWF/South Asia Regional Workshop on Snow leopard Conservation in Bhutan. Both regional (Bhutan, India, China, Nepal and Pakistan) and international experts revisited the snow leopard programs and developed a work plan for the overall conservation of the snow leopard in the region. This led to WWF's Regional Snow leopard Conservation Strategy. WWF is pleased to submit our final report to the International Snow Leopard Trust on the oneyear, $8,000 grant in support of Snow Leopard and Prey Population Conservation in Bhutan. With the support of the Snow Leopard Trust, we have made great strides towards achieving our goal for this project: To determine the current status of snow leopard and ungulate prey populations in prime snow leopard habitats. Major accomplishments and activities completed thanks to the generous support of the International Snow Leopard Trust include:
Signed of a Terms of Reference between Royal Government, International Snow Leopard
Trust – India, World Wildlife Fund and International Snow Leopard Trust -US;
Developed a joint revised project work plan; and
Purchased basic field supplies and equipment needed for the surveys planned.
|
|
|
Oli, M. K. (1995). The Snow Leopard Dilema: Will they Persist. (pp. 433–441).
|
|
|
Prakash, I. (1985). Asian predators of livestock. Parasites, pests and predators.World animal science, B2, 405–410.
Abstract: Outlines the distribution, status and predatory behaviour on livestock of Chinese alligator Alligator sinensis, gharial Gavialis gangeticus and several species of Crocodylus and Python; and of wolf Canis lupus, Asiatic jackal C. aureus, dhole (Indian wild dog) Cuon alpinus, brown bear Ursus arctos, Asiatic black bear Selenarctos thibetanus, striped hyaena Hyaena hyaena, clouded leopard Neofelis nebulosa, leopard (panther) Panthera pardus, tiger P. tigris, lion P. leo, snow leopard P. uncia, other Felidae and Viverridae. -P.J.Jarvis
|
|
|
Scheber. (1975). Snow Leopard in the south part of Gobi-Altai mountain range.
Abstract: Accorfing to the information from Gurvan its rumored that the snow leopards grow in number and many times they attacked the livestock entering into the domestic area causing damage, we investigated theGurvan Tes sumon of Umnogobi aimag and also Noyon sumon todisplay the reserve review and spreading area of snow leopard from 22 of December of 1975 to 10th of January of 1976.
|
|
|
Vashetko, E., Esipov A., Bykova, E., & Kreuzberg, E. (2005). Snow Leopard Bibliography. Central Asia (Abstracts).
Abstract: Bibliography of the Snow Leopard included publications on the studying various questions of ecology and conservation of the Snow Leopard in Central Asia (305) for the period 1873 to 2004. The most important works on this species in the region, as well as results of the analysis of timing of publications was described.
|
|
|
Wahlberg, C., & Tarkkanen, A. (1980). On the multiple ocular coloboma with retinal dysplasia (MOC) in snow leopards, Pantera uncia. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards (Vol. 2, pp. 183–194). Helsinki: Helsinki Zoo.
|
|
|
Wahlberg, C., Tarkkanen, A., & Blomqvist, L. (1982). Further observations on the multiple ocular coloboma (MOC) in the snow leopard, Panthers uncia. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards (Vol. 3, pp. 139–144). Helsinki: Helsinki Zoo.
Abstract: The first observation of the occurrence of multiple ocular coloboma (MOC) in a snow leopard was reported in the International Pedigree Book of Snow Leopards Volume I in 1978 (1). The lesions in this syndrome consist of coloboma of the upper eye lid and uveal coloboma of the globe. Even colobomatous retinal cysts and retinal dysplasia have been noted. The ethiology of in all ten cases of MOC in the snow leopards kept at the Helsinki Zoo were described and discussed in detail in Volume II of the International Pedigree Book of Snow Leopards (2,3). Three cases of MOC in the snow leopards kept at Henry Doorly Zoo, Omaha, Ne., have been described by Phillips (4), one case is known of in Amsterdam (van Bree, personal communication), and two cases in Zoo Zurich (Isenbugel and Weilenmann, pers. comm.) The ethiology of the defect is still not known although various theories ranging from genetic to exogenous factors have been presented.
|
|
|
Waits, L. P., Buckley-Beason, V. A., Johnson, W. E., Onorato, D., & McCarthy, T. (2006). A select panel of polymorphic microsatellite loci for individual identification of snow leopards (Panthera uncia)
(Vol. 7).
Abstract: Snow leopards (Panthera uncia) are elusive endangered carnivores found in remote mountain regions of Central Asia. New methods for identifying and counting snow leopards are needed for conservation and management efforts. To develop molecular genetic tools for individual identification of hair and faecal samples, we screened 50 microsatellite loci developed for the domestic cat (Felis catus) in 19 captive snow leopards. Forty-eight loci were polymorphic with numbers of alleles per locus ranging from two to 11. The probability of observing matching genotypes for unrelated individuals (2.1 x10-11) and siblings (7.5x10-5) using the 10 most polymorphic loci was low, suggesting that this panel would easily discriminate among individuals in the wild.
|
|