|
Suryawanshi, K. R., Bhatnagar, Y., & Mishra, C. (2009). Why should a grazer browse? Livestock impact on winter resource use by bharal Pseudois nayaur
. Oecologia, , 1–10.
Abstract: Many mammalian herbivores show a temporal diet variation between graminoid-dominated and browse dominated diets. We determined the causes of such a diet shift and its implications for conservation of a medium sized ungulate-the bharal Pseudois nayaur. Past studies show that the bharal diet is dominated by graminoids (>80%) during summer, but the contribution of graminoids declines to about 50% in winter. We tested the predictions generated by two alternative hypotheses explaining the decline: low graminoid availability during winter causes bharal to include browse in their diet; bharal include browse, with relatively higher nutritional quality, in their diet to compensate for the poor quality of graminoids during winter. We measured winter graminoid availability in areas with no livestock grazing, areas with relatively moderate livestock grazing, and those with intense livestock grazing pressures. The chemical composition of plants contributing to the bharal diet was analysed. The bharal diet was quantiWed through signs of feeding on vegetation at feeding locations. Population structures of bharal populations were recorded using a total count method. Graminoid availability was highest in areas without livestock grazing, followed by areas with moderate and intense livestock grazing. The bharal diet was dominated by graminoids (73%) in areas with highest graminoid availability. Graminoid contribution to the bharal diet declined monotonically (50, 36%) with a decline in graminoid availability. Bharal young to female ratio was 3 times higher in areas with high graminoid availability than areas with low graminoid availability. The composition of the bharal winter diet was governed predominantly by the availability of graminoids in the rangelands. Our results suggest that bharal include more browse in their diet during winter due to competition from livestock for graminoids. Since livestock grazing reduces graminoid availability, creation of livestock-free areas is necessary for the conservation of grazing species such as the bharal and its predators including the endangered snow leopard in the Trans-Himalaya.
|
|
|
Suryawanshi, K. R. (2009). Towards snow leopard prey recovery: understanding the resource use strategies and demographic responses of bharal Pseudois nayaur to livestock grazing and removal; Final project report.
Abstract: Decline of wild prey populations in the Himalayan region, largely due to competition with livestock, has been identified as one of the main threats to the snow leopard Uncia uncia. Studies show that bharal Pseudois nayaur diet is dominated by graminoids during summer, but the proportion of graminoids declines in winter. We explore the causes for the decline of graminoids from bharal winter diet and resulting implications for bharal conservation. We test the predictions generated by two alternative hypotheses, (H1) low graminoid availability caused by livestock grazing during winter causes bharal to include browse in their diet, and, (H2) bharal include browse, with relatively higher nutrition, to compensate for the poor quality of graminoids during winter. Graminoid availability was highest in areas without livestock grazing, followed by areas with moderate and intense livestock grazing. Graminoid quality in winter was relatively lower than that of browse, but the difference was not statistically significant. Bharal diet was dominated by graminoids in areas with highest graminoid availability. Graminoid contribution to bharal diet declined monotonically with a decline in graminoid availability. Bharal young to female ratio was three times higher in areas with high graminoid availability than areas with low graminoid availability. No starvation-related adult mortalities were observed in any of the areas. Composition of bharal winter diet was governed predominantly by the availability of graminoids in the rangelands. Since livestock grazing reduces graminoid availability, creation of livestock free areas is necessary for conservation of grazing species such as the bharal and its predators such as the endangered snow leopard in the Trans-Himalaya.
|
|
|
Murali, R., Ikhagvajav, P., Amankul, V., Jumabay, K., Sharma,
K., Bhatnagar, Y. V., Suryawanshi, K., Mishra, C. (2020). Ecosystem service dependence in livestock and crop-based. Journal of Arid Environments, 180, 1–10.
Abstract: Globally, in semi-arid and arid landscapes, there is an
ongoing transition from livestock-production systems to crop-production
systems, and in many parts of Asia's arid mountains, mining for minerals
is also increasing. These changes are accompanied by a change in the
generation and quality of ecosystem services (ES), which can impact
human well-being. In this study, to better understand the impacts of
such transitions, we quantified ES in two crop-based and three
livestock-based production systems in the arid and semi-arid landscapes
of the High Himalaya and Central Asia, specifically in the Indian
Himalaya, Kyrgyz Tien Shan, and Mongolian Altai. Our results showed 1)
high economic dependence (3.6–38 times the respective annual household
income) of local farmers on provisioning ES, with the economic value of
ES being greater in livestock-production systems (7.4–38 times the
annual household income) compared to crop-production systems (3.6–3.7
times the annual household income); 2) ES input into cashmere
production, the main commodity from the livestock-production systems,
was 13–18 times greater than the price of cashmere received by the
farmer; and 3) in the livestock production systems affected by mining,
impacts on ES and quality of life were reported to be negative by
majority of the respondents. We conclude that livestock-based systems
may be relatively more vulnerable to degrading impacts of mining and
other ongoing developments due to their dependence on larger ES resource
catchments that tend to have weaker land tenure and are prone to
fragmentation. In contrast to the general assumption of low value of ES
in arid and semi-arid landscapes due to relatively low primary
productivity, our study underscores the remarkably high importance of ES
in supporting local livelihoods.
|
|
|
Khanyari, M., Zhumabai uulu, K., Luecke, S., Mishra, C.,
Suryawanshi, K. (2020). Understanding population baselines: status of mountain ungulate
populations in the Central Tien Shan Mountains, Kyrgyzstan. Mammalia, , 1–8.
Abstract: We assessed the density of argali (Ovis ammon) and ibex
(Capra sibirica) in Sarychat-Ertash Nature Reserve and its neighbouring
Koiluu valley. Sarychat is a protected area, while Koiluu is a human-use
landscape which is a partly licenced hunting concession for mountain
ungulates and has several livestock herders and their permanent
residential structures. Population monitoring of mountain ungulates can
help in setting measurable conservation targets such as appropriate
trophy hunting quotas and to assess habitat suitability for predators
like snow leopards (Panthera uncia). We employed the double-observer
method to survey 573 km2 of mountain ungulate habitat inside Sarychat
and 407 km2 inside Koiluu. The estimated densities of ibex and argali in
Sarychat were 2.26 (95% CI 1.47–3.52) individuals km-2 and 1.54 (95% CI
1.01–2.20) individuals km-2, respectively. Total ungulate density in
Sarychat was 3.80 (95% CI 2.47–5.72) individuals km-2. We did not record
argali in Koiluu, whereas the density of ibex was 0.75 (95% CI
0.50–1.27) individuals km-2. While strictly protected areas can achieve
high densities of mountain ungulates, multi-use areas can harbour
meaningful
though suppressed populations. Conservation of mountain ungulates and
their predators can be enhanced by maintaining Sarychat-like “pristine”
areas interspersed within a matrix of multi-use areas like Koiluu.
|
|
|
Khanal, G., Mishra, C., Suryawanshi, K. R. (2020). Relative influence of wild prey and livestock abundance on
carnivore-caused livestock predation. Ecology and Evolution, , 1–11.
Abstract: Conservation conflict over livestock depredation is one of the
key drivers of large mammalian carnivore declines worldwide. Mitigating
this conflict requires strategies informed by reliable knowledge of
factors influencing livestock depredation. Wild prey and livestock
abundance are critical factors influencing the extent of livestock
depredation. We compared whether the extent of livestock predation by
snow leopards Panthera uncia differed in relation to densities of wild
prey, livestock, and snow leopards at two sites in Shey Phoksundo
National Park, Nepal. We used camera trap-based spatially explicit
capture–recapture models to estimate snow leopard density;
double-observer surveys to estimate the density of their main prey
species, the blue sheep Pseudois nayaur; and interview-based household
surveys to estimate livestock population and number of livestock killed
by snow leopards. The proportion of livestock lost per household was
seven times higher in Upper Dolpa, the site which had higher snow
leopard density (2.51 snow leopards per 100 km2) and higher livestock
density (17.21 livestock per km2) compared to Lower Dolpa (1.21 snow
leopards per 100 km2; 4.5 livestock per km2). The wild prey density was
similar across the two sites (1.81 and 1.57 animals per km2 in Upper and
Lower Dolpa, respectively). Our results suggest that livestock
depredation level may largely be determined by the abundances of the
snow leopards and livestock and predation levels on livestock can vary
even at similar levels of wild prey density. In large parts of the snow
leopard range, livestock production is indispensable to local
livelihoods and livestock population is expected to increase to meet the
demand of cashmere. Hence, we recommend that any efforts to increase
livestock populations or conservation initiatives aimed at recovering or
increasing snow leopard population be accompanied by better herding
practices (e.g., predator-proof corrals) to protect livestock from snow
leopard.
|
|
|
Bhatia, S., Suryawanshi, K., Redpath, S. M., Mishra, C. (2020). Understanding people's responses toward predators in the Indian Himalaya. Animal Conservation, , 1–8.
Abstract: Research on human–wildlife interactions has largely focused on the magnitude of wildlife‐caused damage, and the patterns and correlates of human attitudes and behaviors. We assessed the role of five pathways through which various correlates potentially influence human responses toward wild animals, namely, value orientation, social interactions (i.e. social cohesion and support), dependence on resources such as agriculture and livestock, risk perception and nature of interaction with the wild animal. We specifically evaluated their influence on people's responses toward two large carnivores, the snow leopard Panthera uncia and the wolf Canis lupus in an agropastoral landscape in the Indian Trans‐Himalaya. We found that the nature of the interaction (location, impact and length of time since an encounter or depredation event), and risk perception (cognitive and affective evaluation of the threat posed by the animal) had a significant influence on attitudes and behaviors toward the snow leopard. For wolves, risk perception and social interactions (the relationship of people with local institutions and inter‐community dynamics) were significant. Our findings underscore the importance of interventions that reduce people's threat perceptions from carnivores, improve their connection with nature and strengthen the conservation capacity of local institutions especially in the context of wolves.
|
|
|
Sharma, K., Fiechter, M., George, T., Young, J., Alexander, J.
S., Bijoor, Suryawanshi, K., Mishra, C. (2020). Conservation and people: Towards an ethical code of conduct for
the use of camera traps in wildlife research. Ecological Solutions and Evidence, , 1–6.
Abstract: 1. Camera trapping is a widely employed tool in wildlife
research, used to estimate animal abundances, understand animal
movement, assess species richness and under- stand animal behaviour. In
addition to images of wild animals, research cameras often record human
images, inadvertently capturing behaviours ranging from innocuous
actions to potentially serious crimes.
2. With the increasing use of camera traps, there is an urgent need to
reflect on how researchers should deal with human images caught on
cameras. On the one hand, it is important to respect the privacy of
individuals caught on cameras, while, on the other hand, there is a
larger public duty to report illegal activity. This creates ethical
dilemmas for researchers.
3. Here, based on our camera-trap research on snow leopards Panthera
uncia, we outline a general code of conduct to help improve the practice
of camera trap based research and help researchers better navigate the
ethical-legal tightrope of this important research tool.
|
|
|
Sharma, R. K., Sharma, K., Borchers, D., Bhatnagar, Y V., Suryawanshi, K. R., Mishra, C. (2021). Spatial variation in population-density of snow leopards in a multiple use landscape in Spiti Valley, Trans-Himalaya.
Abstract: The endangered snow leopard Panthera uncia occurs in human use landscapes in the mountains of South and Central Asia. Conservationists generally agree that snow leopards must be conserved through a land-sharing approach, rather than land-sparing in the form of strictly protected areas. Effective conservation through land-sharing requires a good understanding of how snow leopards respond to human use of the landscape. Snow leopard density is expected to show spatial variation within a landscape because of variation in the intensity of human use and the quality of habitat. However, snow leopards have been difficult to enumerate and monitor. Variation in the density of snow leopards remains undocumented, and the impact of human use on their populations is poorly understood. We examined spatial variation in snow leopard density in Spiti Valley, an important snow leopard landscape in India, via spatially explicit capture-recapture analysis of camera trap data. We camera trapped an area encompassing a minimum convex polygon of 953 km2. Our best model estimated an overall density of 0.5 (95% CI: 0.31–0.82) mature snow leopards per 100 km2. Using AIC, our best model showed the density of snow leopards to depend on estimated wild prey density, movement about activity centres to depend on altitude, and the expected number of encounters at the activity centre to depend on topography. Models that also used livestock biomass as a density covariate ranked second, but the effect of livestock was weak. Our results highlight the importance of maintaining high density pockets of wild prey populations in multiple-use landscapes to enhance snow leopard conservation.
|
|
|
Sharma, R. K., Sharma, K., Borchers, D., Bhatnagar, Y. V., Suryawanshi, K. S., Mishra, C. (2020). Spatial variation in population-density, movement and detectability of snow leopards in
2 a multiple use landscape in Spiti Valley, Trans-Himalaya. bioRxiv, .
Abstract: The endangered snow leopard Panthera uncia occurs in human use landscapes in the mountains of South and Central Asia. Conservationists generally agree that snow leopards must be conserved through a land-sharing approach, rather than land-sparing in the form of strictly protected areas. Effective conservation through land-sharing requires a good understanding of how snow leopards respond to human use of the landscape. Snow leopard density is expected to show spatial variation within a landscape because of variation in the intensity of human use and the quality of habitat. However, snow leopards have been difficult to enumerate and monitor. Variation in the density of snow leopards remains undocumented, and the impact of human use on their populations is poorly understood. We examined spatial variation in snow leopard density in Spiti Valley, an important snow leopard landscape in India, via spatially explicit capture recapture analysis of camera trap data. We camera trapped an area encompassing a minimum convex polygon of 953 km . We estimated an overall density of 0.49 (95% CI: 0.39-0.73) adult snow leopards per 100 km . Using AIC, our best model showed the density of snow leopards to depend on wild prey density, movement about activity centres to depend on altitude, and the expected number of encounters at the activity centre to depend on topography. Models that also used livestock biomass as a density covariate ranked second, but the effect of livestock was weak. Our results highlight the importance of maintaining high density pockets of wild prey populations in multiple use landscapes to enhance snow leopard conservation.
|
|
|
Suryawanshi, K. R., Khanyari, M., Sharma, K., Lkhagvajav, P., Mishra, C. (2019). Sampling bias in snow leopard population estimation studies. Population Eccology, , 1–9.
Abstract: Accurate assessments of the status of threatened species and their conservation
planning require reliable estimation of their global populations and robust monitoring
of local population trends. We assessed the adequacy and suitability of studies
in reliably estimating the global snow leopard (Panthera uncia) population. We
compiled a dataset of all the peer-reviewed published literature on snow leopard
population estimation. Metadata analysis showed estimates of snow leopard density
to be a negative exponential function of area, suggesting that study areas have generally
been too small for accurate density estimation, and sampling has often been
biased towards the best habitats. Published studies are restricted to six of the
12 range countries, covering only 0.3�0.9% of the presumed global range of the
species. Re-sampling of camera trap data from a relatively large study site
(c.1684 km2) showed that small-sized study areas together with a bias towards
good quality habitats in existing studies may have overestimated densities by up to
five times. We conclude that current information is biased and inadequate for generating
a reliable global population estimate of snow leopards. To develop a rigorous
and useful baseline and to avoid pitfalls, there is an urgent need for
(a) refinement of sampling and analytical protocols for population estimation of
snow leopards (b) agreement and coordinated use of standardized sampling protocols
amongst researchers and governments across the range, and (c) sampling
larger and under-represented areas of the snow leopard's global range.
|
|
|
Ding, Y., Wu, N., Liu, Y. Zhong, H., Cering, L. Shi, K. (2025). New records of the clouded leopard Neofelis nebulosa in the Qomolangma National Nature Reserve, Tibet. Oryx, , 1.
|
|
|
Samelius, G., Suryawanshi, K., Frank, J., Agvaantseren, B., Baasandamba, E., Mijiddorj, T., Johansson, O., Tumursukh, L., Mishra, C. (2020). Keeping predators out: testing fences to reduce livestock depredation at night-time corrals. Oryx, , 1–7.
Abstract: Livestock depredation by large carnivores is a global conservation challenge, and mitigation measures to reduce livestock losses are crucial for the coexistence of large carnivores and people. Various measures are employed to reduce livestock depredation but their effectiveness has rarely been tested. In this study, we tested the effectiveness of tall fences to reduce livestock losses to snow leopards Panthera uncia and wolves Canis lupus at night-time corrals at the winter camps of livestock herders in the Tost Mountains in southern Mongolia. Self-reported livestock losses at the fenced corrals were reduced from a mean loss of 3.9 goats and sheep per family and winter prior to the study to zero losses in the two winters of the study. In contrast, self-reported livestock losses in winter pastures, and during the rest of the year, when herders used different camps, remained high, which indicates that livestock losses were reduced because of the fences, not because of temporal variation in predation pressure. Herder attitudes towards snow leopards were positive and remained positive during the study, whereas attitudes towards wolves, which attacked livestock also in summer when herders moved out on the steppes, were negative and worsened during the study. This study showed that tall fences can be very effective at reducing night-time losses at corrals and we conclude that fences can be an important tool for snow leopard conservation and for facilitating the coexistence of snow leopards and people.
|
|
|
Atzeni, L., Cushman, S. A., Wang, J., Riordan, P., Shi, K., Bauman, D. (2021). Evidence of spatial genetic structure in a snow leopard population from Gansu, China. Heredity, . Retrieved July 9, 2025, from http://dx.doi.org/https://doi.org/10.1038/s41437-021-00483-0
Abstract: Understanding the spatial structure of genetic diversity provides insights into a populations’ genetic status and enables assessment of its capacity to counteract the effects of genetic drift. Such knowledge is particularly scarce for the snow leopard, a conservation flagship species of Central Asia mountains. Focusing on a snow leopard population in the Qilian mountains of Gansu Province, China, we characterised the spatial genetic patterns by incorporating spatially explicit indices of diversity and multivariate analyses, based on different inertia levels of Principal Component Analysis (PCA). We compared two datasets differing in the number of loci and individuals. We found that genetic patterns were significantly spatially structured and were characterised by a broad geographical division coupled with a fine-scale cline of differentiation. Genetic admixture was detected in two adjoining core areas characterised by higher effective population size and allelic diversity, compared to peripheral localities. The power to detect significant spatial relationships depended primarily on the number of loci, and secondarily on the number of PCA axes. Spatial patterns and indices of diversity highlighted the cryptic structure of snow leopard genetic diversity, likely driven by its ability to disperse over large distances. In combination, the species’ low allelic richness and large dispersal ability result in weak genetic differentiation related to major geographical features and isolation by distance. This study illustrates how cryptic genetic patterns can be investigated and analysed at a fine spatial scale, providing insights into the spatially variable isolation effects of both geographic distance and landscape resistance.
|
|
|
Alexander, J. S., Bijoor, A., Gurmet, K., Murali, R., Mishra, C., Suryawanshi, K. R. (2022). Engaging women brings conservation benefits to snow leopard landscapes. Environmental Conservation, , 1–7.
Abstract: Protection of biodiversity requires inclusive and gender-responsive programming. Evidence of success in engaging women in large carnivore conservation remains scarce, however, although women play an important role in caring for livestock at risk of predation and could contribute to large-carnivore conservation. We aimed to assess the performance of an income-generation and skills-building programme for women in Spiti Valley (India) that sought to engage women in local conservation action. Annual programme monitoring together with a one-time survey of attitudes, perceptions and social norms in eight communities exposed to the conservation programme and seven ‘control’ communities revealed: a keen interest and increasing levels of women’s participation over 7 years of programme operation; participant reports of multiple programme benefits including additional personal income, social networking and travel opportunities; and more positive attitudes towards snow leopards among programme participants than among non-participants in the control communities. Women from programme communities recorded in their diaries 33 self-directed conservation actions including improving livestock protection and preventing wildlife poaching. These results show a way forward to purposively engage women in conservation programming towards achieving sustainable and equitable outcomes in efforts to promote carnivore–human coexistence.
|
|
|
Atzeni, L., Wang, J., Riordan, P., Shi, K., Cushman, S. A. (2023). Landscape resistance to gene flow in a snow leopard population from Qilianshan National Park, Gansu, China. Landscape Ecology, .
Abstract: Context: The accurate estimation of landscape resistance to movement is important for ecological understanding and conservation applications. Rigorous estimation of resistance requires validation and optimization. One approach uses genetic data for the optimization or validation of resistance models. Objectives We used a genetic dataset of snow leopards from China to evaluate how landscape genetics resistance models varied across genetic distances and spatial scales of analysis. We evaluated whether landscape genetics models were superior to models of resistance derived from habitat suitability or isolation-by-distance.
Methods: We regressed genetically optimized, habitat-based, and isolation-by-distance hypotheses against genetic distances using mixed effect models. We explored all subset combinations of genetically optimized variables to find the most supported resistance scenario for each genetic distance.
Results: Genetically optimized models always out-performed habitat-based and isolation-by-distance hypotheses. The choice of genetic distances influenced the apparent influence of variables, their spatial scales and their functional response shapes, producing divergent resistance scenarios. Gene flow in snow leopards was largely facilitated by areas of intermediate ruggedness at intermediate elevations corresponding to small-to-large valleys within and between the mountain ranges.
Conclusions: This study highlights that landscape genetics models provide superior estimation of functional dispersal than habitat surrogates and suggests that optimization of genetic distance should be included as an optimization routine in landscape genetics, along with variables, scales, effect size and functional response shape. Furthermore, our study provides new insights on the ecological conditions that promote gene flow in snow leopards, which expands ecological knowledge, and we hope will improve conservation planning.
|
|
|
Alexander, J. S., Murali, R., Mijiddorj, T. N., Agvaantseren, B., Lhamo, C., Sharma, D., Suryawanshi, K. R., Zhi, L., Sharma, K., Young, J. C. (2023). Applying a gender lens to biodiversity conservation in High Asia. Frontiers in Conservation Science, , 1–8.
Abstract: Community-based conservation efforts represent an important approach to facilitate the coexistence of people and wildlife. A concern, however, is that these efforts build on existing community structures and social norms, which are commonly dominated by men. Some biodiversity conservation approaches may consequently neglect women’s voices and deepen existing inequalities and inequities. This paper presents two community case studies that draw upon the knowledge and experience gained in our snow leopard conservation practice in pastoral and agro-pastoral settings in Mongolia and India to better understand women’s roles and responsibilities. In these settings, roles and responsibilities in livestock management and agriculture are strongly differentiated along gender lines, and significant gaps remain in women’s decision-making power about natural resources at the community level. We argue that context-specific and gender-responsive approaches are needed to build community support for conservation actions and leverage women’s potential contributions to conservation outcomes.
|
|
|
Sharma, M., Khanyari, M., Khara, A., Bijoor, A., Mishra, C., Suryawanshi, K. R. (2024). Can livestock grazing dampen density-dependent fluctuations in wild herbivore populations? Journal of Applied Ecology, , 1–12.
Abstract: 1. Conservation policy for the high mountains of Asia increasingly recognises the need to encompass large multi-use landscapes beyond the protected area network. Due to limited long-term research in this region, our understanding of even fundamental processes, such as factors regulating large mammal populations is poor.
2. Understanding the factors that regulate animal populations, especially those generating cyclicity, is a long-standing problem in ecology. Long-term research across multiple taxa (mainly from Europe and North America) has focussed on the relative roles of food and predation in generating cyclicity in population dynamics. It remains unclear how trophic interactions that are influenced by anthropogenic stressors can affect population dynamics in human-modified landscapes.
3. We present a 10-year study to compare the effects of livestock grazing on density-dependent dynamics in two populations of bharal, Pseudois nayaur, in the Himalayas. We combine this with a mechanistic understanding of whether density dependence in these two sites acts predominantly by affecting adult survival or recruitment. We compared and quantified density dependence in the bharal population by fitting Bayesian Gompertz state-space models.
4. We found evidence for negative density dependence which indicates possible cyclic dynamics in the bharal population of the site (Tabo) with low livestock density. The population dynamics of this site were driven by recruited offspring—with a 2-year density-dependent lag effect—rather than adult survival. In the site with high livestock density (Kibber), this density dependence was not detected. We postulate the potential role of excessive grazing by livestock in affecting offspring recruitment, thereby affecting the bharal population in Kibber.
5. Synthesis and applications: Our results suggest that conservation action to facilitate wild herbivore population recovery, such as the development of protected areas and village reserves, needs to account for density-dependent regulation. Sites with trophy hunting require continuous monitoring to understand the effects of density dependence so that appropriate hunting quotas can be formulated.
|
|
|
Khanyari, M., Sanyal, O., Chandan, P., Bajaj, D., Sharma, C., Rana, M., Sharma, N., Bashir, T., Suryawanshi, K. (2024). A new dawn? Population baselines of snow leopards and other mammals of the Kishtwar High Altitude National Park, India. Integrative Conservation, , 1–10.
Abstract: Accurately assessing the status of threatened species requires reliable population estimates. Despite this necessity, only a small proportion of the global distribution range of the vulnerable snow leopard (Panthera uncia) has been systematically sampled. The Indian section of the Greater Himalayas, which includes Kishtwar High Altitude National Park (KHANP), harbours potential snow leopard habitat. Nevertheless, there has been limited ecological and conservation research focusing on species that are specific to KHANP, as well as limited research on the broader biodiversity of the Greater Himalayas. We used Spatially Explicit Capture‐Recapture (SECR) models to provide—to our knowledge—the first robust snow leopard population density and abundance estimates from KHANP. We also provide a Relative Abundance Index (RAI) for non‐volant mammals (excluding small rodents). Our study sampled three catchments within the Dachhan region of KHANP—Kibber, Nanth and Kiyar—using 44 cameras over a 45‐day period between May and June 2023. We identified four unique snow leopard individuals across 15 detections in nine camera locations. SECR analysis estimated a density of 0.50 snow leopards per 100 km2 (95% confidence interval: 0.13–1.86), corresponding to an abundance of four individual (4–9) adults. Camera trapping revealed a total of 16 mammal species, including the endangered Kashmir musk deer (Moschus cupreus). Marmots (Marmota caudata) had the highest RAI of 21.3 (±0.2). Although the estimated density and abundance of snow leopards in our study area had relatively wide 95% confidence intervals, our combined results of snow leopard densities and RAIs of prey species such as ibex and marmots indicate that KHANP is a potentially important area for snow leopards. Given the geopolitical history of Jammu and Kashmir in India, the region where KHANP is located, wildlife research remains a low priority. We hope our study encourages authorities to support further research. This study is an initial step towards evaluating the potential of KHANP as a conservation landscape under the Government of India's Project Snow Leopard.
|
|
|
Sharma, C., Thuktan, T., Tobge, R., Angrup, D., Chhering, D., Sherab, T., Chhering, T., Bajaj, D., Khanyari, M., Suryawanshi, K. (2024). First Photographic Evidence of Pallas’s Cat (Otocolobus manul) from Himachal Pradesh, India. SL Reports, 3, 79–87.
Abstract: While the study of carnivore ecology has made significant progress, our knowledge of small cats remains limited. For some species, their distribution remains largely unknown. We report the first photographic evidence of the Pallas’s cat in Himachal Pradesh, India. Of the 56 camera traps placed for snow leopard population estimation across Kinnaur region between March-May 2024, we recorded Pallas’s cat at three camera trap sites with 19 images from three instances during morning hours. These captures were at an elevation of 3900–4100 meters in rocky habitats largely dominated by boulders and cliffs. Sympatric carnivores captured were snow leopard (Panthera uncia), red fox (Vulpes vulpes), stone marten (Martes foina) and free-ranging dogs. This discovery not only extends the known distribution of Pallas’s cat but also underscores the urgent need for focused conservation research and action in this region, especially given the presence of free-ranging dogs. This can be achieved through coordinated, landscape level and trans-boundary efforts.
|
|
|
Suryawanshi, K. R., Redpath, S. M., Bhatnagar, Y. V., Ramakrishnan, U., Chaturvedi, V., Smout, S. C., Mishra, C. Impact of wild prey availability on livestock predation by snow leopards. Royal Society Open Science, , 1–11.
Abstract: An increasing proportion of the world�s poor is rearing livestock today, and the global livestock population is growing. Livestock predation by large carnivores and their retaliatory
killing is becoming an economic and conservation concern. A common recommendation for carnivore conservation and for reducing predation on livestock is to increase wild prey populations based on the assumption that the carnivores will consume this alternative food. Livestock predation, however, could either reduce or intensify with increases in wild prey depending on prey choice and trends in carnivore abundance. We show that the extent of livestock predation by the endangered snow leopard Panthera uncia
intensifies with increases in the density of wild ungulate prey, and subsequently stabilizes. We found that snow leopard density, estimated at seven sites, was a positive linear function of the density of wild ungulates�the preferred prey�and showed no discernible relationship with livestock density. We also found that modelled livestock predation increased with livestock density. Our results suggest that snow leopard conservation would benefit from an increase in wild ungulates, but that would intensify the problem of livestock predation for pastoralists. The potential benefits of increased wild prey abundance in reducing livestock predation
can be overwhelmed by a resultant increase in snow leopard populations. Snow leopard conservation efforts aimed atfacilitating increases in wild prey must be accompanied by greater assistance for better livestock
protection and offsetting the economic damage caused by carnivores.
|
|
|
Suryawanshi, K. R., Redpath, S., Bhatnagar, Y. V., Ramakrishnan, U., Chaturvedi, V., Smout, S. C., Mishra, C. (2017). Impact of wild prey availability on livestock predation by snow leopards. Royal Society Open Science, , 1–11.
Abstract: An increasing proportion of the world�s poor is rearing
livestock today, and the global livestock population is growing.
Livestock predation by large carnivores and their retaliatory
killing is becoming an economic and conservation concern.
A common recommendation for carnivore conservation and
for reducing predation on livestock is to increase wild prey
populations based on the assumption that the carnivores
will consume this alternative food. Livestock predation,
however, could either reduce or intensify with increases
in wild prey depending on prey choice and trends in
carnivore abundance. We show that the extent of livestock
predation by the endangered snow leopard Panthera uncia
intensifies with increases in the density of wild ungulate
prey, and subsequently stabilizes. We found that snow leopard
density, estimated at seven sites, was a positive linear
function of the density of wild ungulates�the preferred
prey�and showed no discernible relationship with livestock
density. We also found that modelled livestock predation
increased with livestock density. Our results suggest that
snow leopard conservation would benefit from an increase
in wild ungulates, but that would intensify the problem of
livestock predation for pastoralists. The potential benefits of
increased wild prey abundance in reducing livestock predation
can be overwhelmed by a resultant increase in snow leopard
populations. Snow leopard conservation efforts aimed at
facilitating increases in wild prey must be accompanied by greater assistance for better livestock
protection and offsetting the economic damage caused by carnivores.
|
|
|
Alexander, J., S., Gopalaswamy, A., M., Shi, K., Hughes, J., Riordan, P. (2016). Patterns of Snow Leopard Site Use in an Increasingly Human-Dominated Landscape. PLoS ONE, , 1–15.
Abstract: Human population growth and concomitant increases in demand for natural resources pose threats to many wildlife populations. The landscapes used by the endangered snow leopard (Panthera uncia) and their prey is increasingly subject to major changes in land use. We aimed to assess the influence of 1) key human activities, as indicated by the presence of mining and livestock herding, and 2) the presence of a key prey species, the blue sheep (Pseudois nayaur), on probability of snow leopard site use across the landscape. In Gansu Province, China, we conducted sign surveys in 49 grid cells, each of 16 km2 in size, within a larger area of 3392 km2. We analysed the data using likelihood-based habitat occupancy models that explicitly account for imperfect detection and spatial auto-correlation between survey transect segments. The model-averaged estimate of snow leopard occupancy was high [0.75 (SE 0.10)], but only marginally higher than the naïve estimate (0.67). Snow leop- ard segment-level probability of detection, given occupancy on a 500 m spatial replicate, was also high [0.68 (SE 0.08)]. Prey presence was the main determinant of snow leopard site use, while human disturbances, in the form of mining and herding, had low predictive power. These findings suggest that snow leopards continue to use areas very close to such disturbances, as long as there is sufficient prey. Improved knowledge about the effect of human activity on large carnivores, which require large areas and intact prey populations, is urgently needed for conservation planning at the local and global levels. We highlight a number of methodological considerations that should guide the design of such research.
|
|
|
Alexander, J., Chen, P., Damerell, P., Youkui, W., Hughes, J., Shi, K., Riordan, P. (2015). Human wildlife conflict involving large carnivores in Qilianshan, China and the minimal paw-print of snow leopards. Biological Conservation, 187, 1–9.
Abstract: In this paper, we assess local perceptions towards snow leopards in North West China using a framework
depicting key conflict domains. We describe the perceived threats posed to humans by the snow leopard
and set them within beliefs and attitudes towards other species within the large carnivore assemblage in
this region. Surveys were conducted in seven villages within Qilianshan National Nature Reserve, Gansu
Province, China, to document reports of snow leopard (Panthera uncia), grey wolf (Canis lupus), Eurasian
lynx (Lynx lynx) and brown bear (Ursus arctos) depredation of livestock, and local attitudes towards each
species. Questionnaire-based interviews were held with 60 households and 49 livestock herders. Herding
of yak, sheep and goats was found to be a common livelihood activity among households in all villages.
Herders reported losing livestock to all four carnivore species. Herders reported that depredation was the
most common event affecting livestock, compared with natural disasters or disease, and represented a
total loss of 3.6% of the livestock population during the previous year. Most (53%) depredation losses were
attributed to lynx, while snow leopards were held responsible for only 7.8% of depredation losses. The
reported impact of snow leopards on herding activities was relatively small and the majority of both
householders and herders expressed positive attitudes towards them and supported measures for their
protection. Households and herders held negative attitudes towards lynx, wolves and bears, however,
most likely due to their perceived threat to livestock and humans. Understanding community perceptions
of threats posed by wildlife is vital for gaining community support for, and engagement in, conflict
mitigation.
|
|
|
Alexander, J. S., Gopalswamy, A. M., Shi, K., Riordan, P. (2015). Face Value: Towards Robust Estimates of Snow Leopard Densities. Plos One, .
Abstract: When densities of large carnivores fall below certain thresholds, dramatic ecological effects
can follow, leading to oversimplified ecosystems. Understanding the population status of
such species remains a major challenge as they occur in low densities and their ranges are
wide. This paper describes the use of non-invasive data collection techniques combined
with recent spatial capture-recapture methods to estimate the density of snow leopards
Panthera uncia. It also investigates the influence of environmental and human activity indicators
on their spatial distribution. A total of 60 camera traps were systematically set up during
a three-month period over a 480 km2 study area in Qilianshan National Nature Reserve,
Gansu Province, China. We recorded 76 separate snow leopard captures over 2,906 trapdays,
representing an average capture success of 2.62 captures/100 trap-days. We identified
a total number of 20 unique individuals from photographs and estimated snow leopard
density at 3.31 (SE = 1.01) individuals per 100 km2. Results of our simulation exercise indicate
that our estimates from the Spatial Capture Recapture models were not optimal to
respect to bias and precision (RMSEs for density parameters less or equal to 0.87). Our
results underline the critical challenge in achieving sufficient sample sizes of snow leopard
captures and recaptures. Possible performance improvements are discussed, principally by
optimising effective camera capture and photographic data quality.
|
|
|
Tumursukh, L., Suryawanshi, K. R., Mishra, C., McCarthy, T. M., Boldgiv, B. (2015). Status of the mountain ungulate prey of the Endangered snow leopard Panthera uncia in the Tost Local Protected Area, South Gobi, Mongolia. Oryx, , 1–6.
Abstract: The availability of wild prey is a critical predictor of carnivore density. However, few conservation pro- grammes have focused on the estimation and monitoring of wild ungulate populations and their trends, especially in the remote mountains of Central Asia. We conducted double-observer surveys to estimate the populations of ibex Capra sibirica and argali Ovis ammon in the mountain- ous regions of Tost Local Protected Area, South Gobi prov- ince, Mongolia, which is being considered for designation as a Nature Reserve. We also conducted demographic surveys of the more abundant ibex to examine their sex-ratio and the survival of young during –. The estimated ibex population remained stable in  and  and the es- timated argali population increased from  in  to  in . The biomass of wild ungulates was c. % that of live- stock. Mortality in young ibex appeared to increase after weaning, at the age of  months. We estimated the popula- tion of wild ungulates was sufficient to support – adult snow leopards Panthera uncia. The adult snow leopard population in our study area during –, estimated independently using camera-trap-based mark–recapture methods, was –. Based on our results we identify the Tost Local Protected Area as an important habitat for the conservation of these ungulates and their predator, the Endangered snow leopard, and recommend elevation of its status to a Nature Reserve.
|
|