Home | << 1 2 3 4 >> |
![]() |
Subbotin, A. E., & Istomov, S. V. (2009). The population status of snow leopards Uncia uncia (Felidae, Carnivora) in the western Sayan Mountain Ridge. Doklady Biologicl Sciences, 425, 183–186.
Abstract: The snow leopard (Uncia uncial Schreber, 1776) is the most poorly studied species of the cat family in the world and, in particular, in Russia, where the northern periphery of the species area (no more than 3% of it) is located in the Altai-Hangai-Sayan range [1]. It is generally known that the existing data on the Russian part of the snow leopard population have never been a result of targeted studies; at best, they have been based on recording the traces of the snow leopard vital activity [2]. This is explained by the snow leopard's elusive behavior, inaccessibility of its habitats for humans, and its naturally small total numbers in the entire species area. All published data on the population status of the snow leopard in Russia, from the first descriptions of the species [3-6] to the latest studies [7, 8] are subjective, often speculative, and are not confirmed by
quantitative estimates. It is obvious, however, that every accurate observation of this animal is of particular interest [9]. The purpose of our study was to determine the structure and size of the population group presumably inhabiting the Western Sayan mountain ridge at the northern boundary of the species area Keywords: population; status; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; uncia; Uncia uncia; Uncia-uncia; Felidae; Carnivora; Sayan; mountain; Russian; Test; species; cat; Russia; area; range; Data; study; activity; activities; behavior; habitats; habitat; humans; Human; number; description; Animal; structure
|
Xu, F., Ming, M., Yin, S. -jing, & Mardan. (2005). Snow Leopard Survey in Tumor Nature Reserve, Xingjiang (Vol. 24).
Abstract: Snow leopard survey was conducted in Oct-Nov 2004 at Tumor National Natural Reserve, Xinjiang, China. Because of its special living style, the snow leopard is difficult to observe by sight. Signs left by snow leopard become a good index to prove the existance of the big cat. There are mainly five kinds of signs, footprints, fectes, claw rakes and urine spray. From them we can know the distribution, probably population and habitat selection of snow leopard. This time in Tumor we investigated 5 difference places: Pochenzi in Mozat River area, Boxidun in Little Kuzbay River area, Yinyer in Tomur River area, Kurgan and Taglak in Quiong Tailan River area. 42 transects were run in this trip and a total of 57 signs found. Among them, footprints amounted to 71.9%, scrapes 21.1%, and feces 7.0%. The results showed that the big cat existed in Yinyer, Kurgan and Taglak areas and liked to select their habitat in the valley and didn't like to live in barren areas.
|
McCarthy, T. (1999). Snow leopard conservation project, Mongolia: WWF Project Summary of Field Work.
Keywords: irbis-enterprises; Mongolia; gobi; Altai; Altay; habitat; status; distribution; Uvs; conservation; parks; preserves; refuge; protected-area; herders; livestock; predator; prey; field-work; field-study; field-studies; training; Slims; transects; sign; sprays; scrapes; markings; population; browse; irbis; enterprises; protected; area; field work; field; work; field study; study; 3870
|
Ming, M., XuFeng, Turghan, M., & Shoujin, Y. (2004). Report on Snow Leopard (Uncia uncia) Surveys in Tomur, Xinjiang, China 2004. Xinjian, P.R. of China: Xinjiang Snow Leopard Group; Xinjiang Institute of Ecology and Geography; Chinese Academy of Science.
Abstract: The Snow Leopard (Uncia uncia) investigation in the Tomur area is the second step of the “Project of Snow Leopard Study in Xinjiang”. In this part of the project, we collected information on the distribution , abundance and population size of the snow leopard in this area. The investigation lasted for 3 weeks, between October 17 and November 7th, 2004. During the 22 days of field work, we surveyed 4 different places in Wensu County, Aksu District: e.g. Pochenzi and the Muzat River area, Bozdun and the Little Kuzbay River area, Yinyar and the Tomur River area, Taglak and the Qiong Tailan River area. The 4 main areas, along with a few other valleys, covered most of the Tomur National Conservation Zone. In total, we ran 42 transects. In 15 transects, we found signs left by snow leopards. We also collected 15 fecal samples for diet analysis. This time we interviewed nearly 90 local people from different nationalities: e.g. Han (Chinese), Uygur and Kyrgyz people, including herdsmen, geologists, mineworkers, drivers, veterinarians, businessmen, forest officials, soldiers and policemen. They provided us with an array of information on the historical and current distribution and abundance of the snow leopard in this area.
Keywords: snow leopard; Uncia uncia; survey; distribution; abundance; population size; Tomur; Xinjiang; P.R.China; 5710
|
Mongolian Biosphere & Ecology Association. (2010). Mongolian Biosphere & Ecology Association Report March 2010.
Abstract: In accordance with order of the Ministry of Nature and Tourism,
zoologists of our association have made surveys in three ways such as reasons why snow leopards attack domestic animals, “Snow leopard” trial operation to count them and illegal hunting in territories of Khovd, Gobi-Altai, Bayankhongor, Uvurkhangai and Umnugobi provinces from September 2009 to January 2010. As result of these surveys it has made the following conclusions in the followings: Reason to hunt them illegally: the principal reason is that administrative units have been increased and territories of administrative units have been diminished. There have been four provinces in 1924 to 1926, 18 since 1965, 21 since 1990. Such situation limits movements of herdsmen completely and pastures digressed much than ever before. As result of such situation, 70% of pastures become desert. Such digression caused not only heads of animals and also number of species. Guarantee is that birds such as owls, cuckoo, willow grouse in banks of Uyert river, Burkhanbuudai mountain, located in Biger soum, Gobi-Altai province, which are not hunted by hunters, are disappearing in the recent two decades. For that reason we consider it is urgently necessary for the government to convert administrative unit structures into four provinces. This would influence herdsmen moving across hundreds km and pastures could depart from digression. Second reason: cooperative movement won. The issues related to management and strengthening of national cooperatives, considered by Central Committee of Mongolian People's Revolutionary Party in the meeting in March 1953 was the start of cooperatives' movement. Consideration by Yu. Tsedenbal, chairman of Ministers Council, chairman of the MPRP, on report "Result of to unify popular units and some important issues to maintain entity management of agricultural cooperatives" in the fourth meeting by the Central Committee of Mongolian People's Revolutionary Party /MPRP/ on December 16-17, 1959, proclaimed complete victory of cooperative. At the end of 1959, it could unify 767 small cooperative into 389 ones, unify 99.3 % of herdsmen and socialize 73.3 % of animals. The remaining of animals amount 6 million 163 thousands animals, and equals to 26.7% of total animals. This concerned number of animals related to the article mentioned that every family should have not more that 50 animals in Khangai zone and not more 75 animals in Gobi desert. It shows that such number could not satisfy needs of family if such number is divided into five main animals in separating with reproduction animals and adult animals. So herdsmen started hunt hoofed animals secretly and illegally in order to satisfy their meat needs. Those animals included main food of snow leopard such as ibex, wild sheep, and marmot. Third reason is that the state used to hunt ibex, which are main nutrition of snow leopards, every year. The administrative unit of the soum pursued policy to hunt ibex in order to provide meat needs of secondary schools and hospitals. That's why this affected decrease of ibex population. Preciously from 1986 to 1990 the permissions to hunt one thousands of wild sheep and two thousands of ibexes were hunt for domestic alimentary use every year. Not less than 10 local hunters of every soum used to take part in big game of ibexes. Also they hunted many ibexes, chose 3-10 best ibexes and hid them in the mountains for their consummation during hunting. Fourth reason: hunting of wolves. Until 1990 the state used to give prizes to hunter, who killed a wolf in any seasons of the year. Firstly it offered a sheep for the wolf hunter and later it gave 25 tugrugs /15 USD/. Every year, wolf hunting was organized several times especially picking wolf-cubs influenced spread and population of wolves. So snow leopard came to the places where wolves survived before and attack domestic animals. Such situation continued until 1990. Now population of ibexes has decreased than before 1990 since the state stopped hunting wolves, population of wolves increased in mountainous zones. We didn't consider it had been right since it was natural event. However population of ibexes decreased. Fifth reason: Global warming. In recent five years it has had a drought and natural disaster from excessive snow in the places where it has never had such natural disasters before. But Mongolia has 40 million heads of domestic animals it has never increased like such quantity in its history before. We consider it is not incorrect that decrease of domestic animals could give opportunities to raise population of wild animals. Our next survey is to make attempt to fix heads of snow leopards correctly with low costs. Keywords: nature; tourism; surveys; survey; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; attack; domestic; Animals; Animal; illegal; illegal hunting; hunting; territory; province; 2010; hunt; 1990; movements; movement; pasture; desert; number; species; birds; river; mountain; hunters; hunter; recent; government; structure; management; national; central; people; Report; gobi; Gobi Desert; reproduction; Adult; meat; food; ibex; wild; wild sheep; sheep; marmot; nutrition; schools; population; use; local; big; big game; big-game; game; 310; mountains; wolves; wolf; Seasons; times; zones; global; Mongolia; 40; history; ecology
|
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
Keywords: snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; region; Nepal; Report; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; 1960; endangered; Sagarmatha; High; Himalaya; tourism; impact; establishment; national; national park; National-park; park; 1980; area; Tibet; surveys; survey; status; Cats; cat; prey; research; project; sign; transects; transect; length; valley; Response; hunting; recovery; Himalayan; tahr; density; densities; range; pugmarks; sighting; 60; study; population; predators; predator; structure; prey species; prey-species; species; populations; mortality; effects; predation; population dynamics
|
Poyarkov, A. D., & Subbotin, A. E. (2002). The Snow Leopard Status in Russia.. Islt: Islt.
|
Poyarkov, A. D., & Subbotin, A. E. (2002). Strategic Priorities and the System of Measures for Snow Leopard Conservation in Russia.. Islt: Islt. |
Reading, R. P., Amgalanbaatar, S., Mix, H., & Lhagvasuren, B. (1997). Argali Ovis ammon surveys in Mongolia's South Gobi. Oryx, 31(4), 285–294.
Abstract: Claims poaching and competition with domestic livestock are threatening the argali's survival in Mongolia. The author's conducted aerial and ground surveys in the South Gobi and estimated a populaton size of approximately 3,900 argali.
|
Saltz, D., Rowen, M., & Rubenstein, D. (2000). The effect of space-use patterns of reintroduced Asiatic wild ass on effective population size. Conservation Biology, 14(6), 1852–1861. |
Smirnov, M. N., Sokolov, G. A., & Zyryanov, A. N. (1990). The Snow Leopard (Uncia Uncia Scherber 1776) in Siberia. Int.Nat.Ped.Book of Snow Leopards, 6, 9–15.
Keywords: siberia; status; distribution; Russia; Ussr; Soviet-Union; browse; soviet union; soviet; union; Altai; Sayan; population; tracks; tracking; petroglyphs; skins; pelts; prey; 2880
|
Sokov, A. I. (1990). The present status of the snow leopard population in the south western Pamir-Altai Mountains (Tadzhikistan). Int.Ped.Book of Snow Leopards, 6, 33–36. |
Spearing, A. (2002). The Snow Leopard in Zanskar, Jammu & Kashmir, NW India.. Islt: Islt.
Abstract: The paper summarises the alleged conflict between livestock herders and wild predators in the trans-Himalayan region of Zanskar, NW India. The snow leopard (Uncia uncia) is seriously threatened by this conflict, with at least thirteen killed in the last seven years in 3 of the study villages alone. Results of snow leopard sign surveys are described, revealing significant increases since the last survey (1986) consistent with alleged increases in livestock depredation. Attitudes toward wildlife and opinions on population trends are assessed. Depredation hotspots are identified and the cost of livestock predation is
discussed in terms of recent developments and social changes in the Zanskar region. Illegal hunting and retaliatory killing are described, and essential programs and conservation measures are suggested. Even at this early stage, there appears scope for raising rural incomes and lifting the burden of co-existence with snow leopard and other unique mountain fauna. |
International Snow Leopard Trust. (2000). Snow Leopard News Spring 2000. Seattle, Wa: Islt.
Keywords: Rutherford; Freeman; Morse; Jackson; Hillard; Natural-Partnerships-Program; Pakistan; Islt; Slims; training; Chitrol-Gol; parks; preserves; reserves; protected-areas; surveys; Hemis; Conflict-Resolution-Workshop; conflict; herders; leh; Jammu; Kashmir; Ladakh; corrals; predator; prey; livestock; depradation; human-wildlife-conflict; Uzbekistan; Gissar; Peace-Corps; Mongolia; Macne; fiction; populations; browse; 4390
|
International Snow Leopard Trust. (2001). Snow Leopard News Spring 2001. Seattle, WA: Islt.
Keywords: Annual-Appeals-Fund; conservation-programs; populations; Kyrgyz-Republic; Soviet-Union; China; India; Mongolia; Pakistan; Charudutt; incentive; Woodland-Park-Zoo; cub; Death; veterinary; medicine; Bayarjargal; raffle; Dorothy-McLean; volunteers; poaching; hunting; pelts; furs; bones; herders; killing; livestock; browse; 4360
|
Wingard, J. R., & Zahler, P. (2006). Silent Steppe: The Illegal Wildlife Trade Crisis in Mongolia (East Asia and Pacific Environment and Social Development Department, Ed.). Washington, D.C.: World Bank.
Abstract: The current study in Mongolia is truly groundbreaking, in that it shows that the problem of commercial wildlife trade is also vast, unsustainable, and a major threat to wildlife populations in other areas. This paper's Executive Summary briefs the topics of wildlife trade in Mongolia, fur trade, medicinal trade, game meat trade, trophy and sport hunting, trade chains and markets, trade sustainability, impacts of wildlife trade on biodiversity conservation, impacts of trade on rural livelihoods, enabling wildlife management, and management recommendations. The main content of the paper includes: wildlife trade survey methods, a history of wildlife trade in Mongolia, wildlife take and trade today, enabling wildlife management, and recommendations and priority actions. The recommendations have been divided into six separate sections, including (1) cross-cutting recommendations, (2) international trade enforcement, (3) domestic trade enforcement, (4) hunting management, (5) trophy and sport hunting management, and (6) community-based approaches. Each section identifies short-term, long-term, and regulatory goals in order of priority within each subsection.
Keywords: steppe; illegal; wildlife; trade; Mongolia; study; threat; populations; population; areas; area; fur; fur trade; fur-trade; game; meat; hunting; Chain; impact; biodiversity; Biodiversity conservation; conservation; rural; livelihood; Wildlife-Management; management; survey; survey methods; methods; history; action; International; enforcement; domestic; community-based; approach
|
Poyarkov, A. D. (2002). Some Aspects of Snow Leopard Research Methodology.. Islt: Islt. |
Xu, F., Ma, M., & Wu, Y. - Q. (2007). Population density and habitat utilization of ibex in Tomur National Nature Reserve,Xinjiang,China. |
McCarthy, T., Murray, K., Sharma, K., & Johansson, O. (2010). Preliminary results of a long-term study of snow leopards in South Gobi, Mongolia. Cat News, Autumn(53), 15–19.
Abstract: Snow leopards Panthera uncia are under threat across their range and require urgent conservation actions based on sound science. However, their remote habitat and cryptic nature make them inherently difficult to study and past attempts have provided insufficient information upon which to base effective conservation. Further, there has been no statistically-reliable and cost-effective method available to monitor snow leopard populations, focus conservation effort on key populations, or assess conservation impacts. To address these multiple information needs, Panthera, Snow Leopard Trust, and Snow Leopard Conservation Fund, launched an ambitious long-term study in Mongolia’s South Gobi province in 2008. To date, 10 snow leo-pards have been fitted with GPS-satellite collars to provide information on basic snow leopard ecology. Using 2,443 locations we calculated MCP home ranges of 150 – 938 km2, with substantial overlap between individuals. Exploratory movements outside typical snow leopard habitat have been observed. Trials of camera trapping, fecal genetics, and occupancy modeling, have been completed. Each method ex-hibits promise, and limitations, as potential monitoring tools for this elusive species.
|
Zhirjakov, V. A. (1990). On the ecology of the snow leopard in the Zailisky-Alatau (Northern Tien Shan). Int Ped Book of Snow Leopards, 6, 25–30. |
Zhiryakov V.A. (1989). The influence of the predators on population trend of the ungulates in the Almaty nature reserve.
Abstract: The data on predators and ungulates population dynamics in Almaty Nature reserve (Kazakhstan) in 1983-1987s are given. The number of snow leopard is stable (3-5 individuals), the density is 0.06 indi/1000 ha. An insignificant increase of Siberian ibex' number (660 to 700) with density of 36 indi/1000 ha is recorded.
Keywords: Kazakhstan; predators; ungulates; dencity; population trend; snow leopard.; 8770; Russian
|
Zhiryakov V.A. (2002). Ecology and behavior of the Snow leopard in Kazakhstan (Vol. N 1-4.).
Abstract: The data on spreading, numbers and population density of snow leopard in Kazakhstan are given in this article. The total number of the snow leopard in Kazakhstan is evaluated in 100-110 individuals. The everywhere occurred numbers' reduction under the influence of the anthropogenic factors is observed. The snow leopard' inhabitation area varies from 20 to 120 square kilometers depending on its regions. Sex and composition of the population and its aggregative behavior are given. The dynamics of numbers and mortality are estimated.
Keywords: Kazakhstan; distribution; number; density; population size; habitats; marking; Migration; diet; prey species; hunting; faeces; Sex; Age; population dynamics; reproductive activity; competitors; mortality; snow leopard.; 8810; Russian
|
Karanth, K. U., Nichols, J.D., Seidensticker, J., Dinerstein, E., David Smith, J.L., McDougal, C., Johnsingh, A.J.T., Chundawat, R.S., Thapar, V. (2003). Science deficiency in conservation practice: the monitoring of tiger populations in India. Animal Conservation, 6, 141–146.
Abstract: Conservation practices are supposed to get refined by advancing scientific knowledge. We study this phenomenon in the context of monitoring tiger populations in India, by evaluating the ‘pugmark census method’ employed by wildlife managers for three decades. We use an analytical framework of modern animal population sampling to test the efficacy of the pugmark censuses using scientific data on tigers and our field observations. We identify three critical goals for monitoring tiger populations, in order of increasing sophistication: (1) distribution mapping, (2) tracking relative abundance, (3) estimation of absolute abundance. We demonstrate that the present census-based paradigm does not work because it ignores the first two simpler goals, and targets, but fails to achieve, the most difficult third goal. We point out the utility and ready availability of alternative monitoring paradigms that deal with the central problems of spatial sampling and observability. We propose an alternative sampling-based approach that can be tailored to meet practical needs of tiger monitoring at different levels of refinement.
|
Ferretti, F., Lovari, S., Minder, I., Pellizzi, B. (2014). Recovery of the snow leopard in Sagarmatha (Mt.Everest) National Park: effects on main prey. European Journal of Wildlife Research, (60), 559–562.
Abstract: Consequences of predation may be particularly
heavy on small populations of herbivores, especially if they are threatened with extinction. Over the 2006–2010 period, we documented the effects of the spontaneous return of the endangered snow leopard on the population of the vulnerable Himalayan tahr. The study area was an area of central Himalaya where this cat disappeared c. 40 years before, because of persecution by man. Snow leopards occurred mainly in areas close to the core area of tahr distribution. Tahr was the staple (56.3 %) of snow leopards. After the arrival of this cat, tahr decreased by more than 2/3 from 2003 to 2010 (mainly through predation on kids). Subsequently, the density of snow leopards decreased by 60%from2007 to 2010. The main prey of snow leopards in Asia (bharal, marmots) were absent in our study area, forcing snow leopards to specialize on tahr. The restoration of a complete prey spectrum should be favoured through reintroductions, to conserve large carnivores and to reduce exploitation of small populations of herbivores, especially if threatened. |
Mallon, D. P., Jackson, R. M. (2017). A downlist is not a demotion: Red List status and reality. Oryx, , 1–5.
Abstract: Assessments of biodiversity status are needed to
track trends, and the IUCN Red List has become the accepted global standard for documenting the extinction risk of species. Obtaining robust data on population size is an essential component of any assessment of a species� status, including assessments for the IUCN Red List. Obtaining such estimates is complicated by methodological and logistical issues, which are more pronounced in the case of cryptic species, such as the snow leopard Panthera uncia. Estimates of the total population size of this species have, to date, been based on little more than guesstimates, but a comprehensive summary of recent field research indicates that the conservation status of the snow leopard may be less dire than previously thought. A revised categorization, from Endangered to Vulnerable, on the IUCN Red List was proposed but met some opposition, as did a recent, similar recategorization of the giant panda Ailuropoda melanoleuca. Possible factors motivating such attitudes are discussed. Downlisting on the IUCN Red List indicates that the species concerned is further from extinction, and is always to be welcomed, whether resulting from successful conservation intervention or improved knowledge of status and trends. Celebrating success is important to reinforce the message that conservation works, and to incentivize donors. |