Thapa, K., Jackson, R., Gurung, L, Acharya, H. B., Gurung, R. K.,. (2021). Applying the double observer methodology for assessing blue sheep population size in Nar Phu valley, Annapurna Conservation Area, Nepal. Wildlife Biology, , 1–11.
Abstract: This study was undertaken in spring, 2019 to assess the applicability of the double-observer survey method for estimating blue sheep Pseudois nayaur abundance in Nar-Phu valley of Manang District located in Annapurna Conservation Area of northern Nepal. Since counting large mammals in rugged mountain habitat poses a special challenge, we tested the efficacy of the double observer method for generating robust population estimates for this important protected area. The overall detection probability for observers (O1 and O2) was 0.94 and 0.91 for a total of 106 groups comprised of 2059 individual blue sheep. We estimated the area’s blue sheep population at 2070 (SE ± 168.77; 95% CI 2059–2405) for the 246.2 km2 of sampled habitat. We determined blue sheep to be widely distributed within the study area with a mean density of 8.4 individuals per km2 based on a total study area of 246.2 km2. We discuss demographic population structure and identify limitations when applying the double observer approach, along with recommending viewshed mapping for ensuring more robust density estimates of mountain-dwelling ungulates like blue sheep or ibex that inhabit extremely heterogeneous terrain which strongly influences sighting distances and overall animal detection rates.
|
Lu, Q., Xiao, L., Cheng, C., Lu, Z., Zhao, J., Yao, M. (2021). Snow Leopard Dietary Preferences and Livestock Predation Revealed by Fecal DNA Metabarcoding: No Evidence for Apparent Competition Between Wild and Domestic Prey. Frontiers in Ecology and Evolution, 9(783546), 1–14.
Abstract: Accurate assessments of the patterns and drivers of livestock depredation by wild carnivores are vital for designing effective mitigation strategies to reduce human-wildlife conflict. Snow leopard’s (Panthera uncia) range extensively overlaps pastoralist land- use and livestock predation there is widely reported, but the ecological determinants of livestock consumption by snow leopards remain obscure. We investigated snow leopard dietary habits at seven sites across the Sanjiangyuan region of the Qinghai– Tibetan Plateau (QTP), an area central to the species’ global range. Snow leopard abundance, wild prey composition, and livestock density varied among those sites, thus allowing us to test the effects of various factors on snow leopard diet and livestock predation. Using DNA metabarcoding, we obtained highly resolved dietary data from 351 genetically verified snow leopard fecal samples. We then analyzed the prey preferences of snow leopards and examined ecological factors related to their livestock consumption. Across the sites, snow leopard prey was composed mainly of wild ungulates (mean = 81.5% of dietary sequences), particularly bharal (Pseudois nayaur), and supplemented with livestock (7.62%) and smaller mammals (marmots, pikas, mice; 10.7%). Snow leopards showed a strong preference for bharal, relative to livestock, based on their densities. Interestingly, both proportional and total livestock consumption by snow leopards increased linearly with local livestock biomass, but not with livestock density. That, together with a slight negative relationship with bharal density, supports apparent facilitation between wild and domestic prey. We also found a significant positive correlation between population densities of snow leopard and bharal, yet those densities showed slight negative relationships with livestock density. Our results highlight the importance of sufficient wild ungulate abundance to the conservation of viable snow leopard populations. Additionally, livestock protection is critically needed to reduce losses to snow leopard depredation, especially where local livestock abundances are high.
|
Xiao, L., Hua, F., Knops, J. M. H., Zhao, X., Mishra, C., Lovari, S., Alexander, J. S., Weckworth, B., Lu, Z. (2022). Spatial separation of prey from livestock facilitates coexistence of a specialized large carnivore with human land use. Animal Conservation, , 1–10.
Abstract: There is an increasing emphasis in conservation strategies for large carnivores on facilitating their coexistence with humans. Justification for coexistence strategies should be based on a quantitative assessment of currently remaining large carnivores in human-dominated landscapes. An essential part of a carnivore’s coexistence strategy has to rely on its prey. In this research, we studied snow leopards Panthera uncia whose habitat mainly comprises human-dominated, unprotected areas, to understand how a large carnivore and its primary prey, the bharal Pseudois nayaur, could coexist with human land use activities in a large proportion of its range. Using a combination of livestock census, camera trapping and wildlife surveys, across a broad gradient of livestock grazing intensity in a 363 000 km2 landscape on the Tibetan Plateau, we found no evidence of livestock grazing impacts on snow leopard habitat use, bharal density and spatial distribution, even though livestock density was 13 times higher than bharal density. Bharal were found to prefer utilizing more rugged habitats at higher elevations with lower grass forage conditions, whereas livestock dominated in flat valleys at lower elevations with higher productivity, especially during the resource-scarce season. These findings suggest that the spatial niche separation between bharal and livestock, together with snow leopards’ specialized bharal diet, minimized conflicts and allowed snow leopards and bharal to coexist in landscapes dominated by livestock grazing. In recent years, reduced hunting and nomadic herder’s lifestyle changes towards permanent residence may have further reinforced this spatial separation. Our results indicated that, for developing conservation strategies for large carnivores, the niche of their prey in relation to human land-use is a key variable that needs to be evaluated.
|
Thapa, K., Rayamajhi, S. (2023). Anti-predator strategies of blue sheep (naur) under varied predator compositions: a comparison of snow leopard-inhabited valleys with and without wolves in Nepal. Wildlife Research, , 1–9.
Abstract: In Nepal, naur are usually the staple wild prey for the snow leopard, a solitary stalker hunter, and in some cases, for the wolf who hunts in a pack. We assumed that naur would adapt their anti-predatory responses to the presence of chasing and ambushing predators in the Manang Valley, where there are snow leopards and wolves, and in the Nar Phu valley, an area where there is only the snow leopard.
Aims. The aim of this study was to determine if there were differences in anti-predator strategies (vigilance, habitat selection and escape terrain) of naur in two valleys over two seasons, spring and autumn.
Methods. In spring 2019, we conducted a reconnaissance survey on the status of the naur and its habitat in the Manang and Nar Phu valleys of the Annapurna Conservation Area, Nepal. In spring and autumn 2020 and 2021, we observed 360 focal naur individuals (180 individuals in each valley), using the vigilance behaviour methodology to examine the behaviour of the naur.
Key results. There was little difference in the size of the naur groups between the Manang and Nar Phu valleys. The naur were twice as vigilant in Manang (15%), where there are snow leopards and wolves, as they were in Nar Phu (9%), with only snow leopards. The distance from the naur to escape cover was significantly shorter in Manang than in Nar Phu valley. Naur used significantly more rolling terrain in Nar Phu than in Manang. Conclusions. The return of wolves to the Manang valley may have resulted in an increase in the level of naur vigilance. Most likely, the wolves in Manang have already had an effect on the female-to-young-ratio, and this effect will possibly have important consequences for the naur population, as well as at the ecosystem level in the future. Other key determining factors, such as the climate crisis and changes in local resources, could have a significant impact on the naur population, indicating the need for more research. Implications. The findings of this study would provide valuable baseline information for the design of a science-based conservation strategy for conservation managers and scientists on naur, snow leopards and wolves.
|
Koju, N. P., Gosai, K. R., Bashyal, B., Byanju, R., Shrestha, A., Buzzard, P., Beisch, W. B., Khanal, L. (2023). Seasonal Prey Abundance and Food Plasticity of the Vulnerable Snow Leopard (Panthera uncia) in the Lapchi Valley, Nepal Himalayas. Animals, 13(3182), 1–16.
Abstract: Conservation strategies for apex predators, like the snow leopard (Panthera uncia), depend on a robust understanding of their dietary preferences, prey abundance, and adaptability to changing ecological conditions. To address these critical conservation concerns, this study presents a comprehensive evidence on prey availability and preferences for snow leopards in the Lapchi Valley in the Nepal Himalayas from November 2021 to March 2023. Field data were collected through the installation of twenty-six camera traps at 16 strategically chosen locations, resulting in the recording of 1228 events of 19 mammalian species, including domesticated livestock. Simultaneously, the collection of twenty snow leopard scat samples over 3800 m above sea level allowed for a detailed dietary analysis. Photo capture rate index and biomass composition analysis were carried out and seasonal prey availability and consumption were statistically analyzed. A total of 16 potential prey species for the snow leopard were documented during the study period. Himalayan musk deer (Moschus leucogaster) was the most abundant prey species, but infrequent in the diet suggesting that are not the best bet prey for the snow leopards. Snow leopards were found to exhibit a diverse diet, consuming eleven prey species, with blue sheep (Pseudois nayaur) being their most consumed wild prey and horses as their preferred livestock. The Pianka’s index of dietary niche overlap between the summer and winter seasons were 0.576, suggesting a pronounced seasonal variation in food preference corroborating with the prey availability. The scarcity of larger preys in winter is compensated by small and meso-mammals in the diet, highlighting the snow leopard’s capacity for dietary plasticity in response to the variation in resource availability. This research suggests for the utilization of genetic tools to further explore snow leopard diet composition. Additionally, understanding transboundary movements and conducting population assessments will be imperative for the formulation of effective conservation strategies.
|
Singh, P. B., Saud, P., Aryal, P. C., Rai, P., Muntifering, J. R., Hu, H., Karki, A., Hu, Y., Mainali, K. P. (2025). Decades of leopard coexistence in the Himalayas driven by ecological dynamics, not climate change. Global Ecology and Conservation, 57(e03401), 1–13.
Abstract: The interaction between two predators in overlapping habitats with distinct habitat requirements poses critical challenges for conservation and management strategies. This study explores the ecological dynamics and coexistence of common leopards (Panthera pardus) and snow leopards (Panthera uncia) in the Himalayan regions, explicitly focusing on their spatial and temporal distribution as well as factors influencing their habitat overlap. Utilizing historical accounts dating back to the 1950s and our winter sighting data from trail cameras from 2016 to 2023 in the trans-Himalayan part of Annapurna Conservation Area of Nepal (3100–4696 m), we provide substantial evidence of the common leopard’s established residency at high altitudes traditionally associated with snow leopards. This challenges the notion that the co-occurrence of these species is a recent
phenomenon attributable to climate change. Instead, our findings suggest a long-term adaptation of common leopards to high-altitude environments, demonstrated by their ability to survive and breed in cold temperatures as low as − 18◦C. We show that the likelihood of co-occurrence of the two leopard species increases with proximity to open forest canopy, farmland and greater distances from snowline. In contrast, steep terrain negatively impacted the likelihood of co-occurrence, highlighting the snow leopard’s specialized adaptations to rugged landscapes. Our analysis reveals a considerable overlap between common and snow leopards in sub-alpine mixed forest and alpine scrub. This overlap extends to dietary habits along the altitudinal range, with both species preying on similar wild and domestic animals, highlighting the potential for interspecies competition, especially during the winter months when prey availability decreases.
|
D'Arcy, P. (2000). Endangered species being slaughtered in Russia's far east: WWF.
Abstract: The World Wide Fund for Nature (WWF) on Saturday accused Russia's far eastern regions of slaughtering endangered species for trade or to protect livestock, the Interfax news agency reported. The international organisation's Moscow branch told the news agency that it could no longer afford the cost of sending out teams of rangers to protect snow leopards from “revenge killing” and poaching.
|
Bhatnagar, Y. V., Stakrey, R. W., & Jackson, R. (2000). A Survey of Depredation and Related Wildlife-Human Conflicts in Hemis National Park, Ladakh (India) (Vol. xvi). Seattle: Islt.
|
Jackson, P. (1997). The Snow Leopard: A Flagship for Biodiversity in the Mountains of Central Asia. In R.Jackson (Ed.), (pp. 3–7). Lahore, Pakistan: Allied Press.
|
Kashkarov D.N. (1923). Living conditions and living in various parts of the mountainous Turkestan. Central Asian snow leopard, irbis (Vol. Issue 2. The animals of mountainous Turkistan.).
Abstract: It describes fauna of the mountainous Turkestan. Irbis is met in Tien Shan, Pamir, Bukhara and Kopet-Dag. Apart from Turkistan, it lives in the Altai, Tibet and on northern slopes of the Himalayas. In Kopet-Dag, this species is met with another panther Caucasian leopard. It preys on ibex, wild sheep, roe deer, keklik (partridge), snow-cock and porcupine. It also attacks small livestock. Normally this species would never attack the man though hunters mentioned some cases that evidence otherwise.
|
Koshkarev, E. P. (1988). An Unusual Hunt. Int.Ped.Book of Snow Leopards, 5, 9–12.
|
Smirnov, M. N., Sokolov, G. A., & Zyryanov, A. N. (1990). The Snow Leopard (Uncia Uncia Scherber 1776) in Siberia. Int.Nat.Ped.Book of Snow Leopards, 6, 9–15.
|
Chundawat, R. S., & Rawat G.S. (1990). Food Habits of Snow Leopard in Ladakh, India.
Abstract: The snow leopard has remained little studied in the past, and most of the information available is either in the form of natural history or anecdotal notes. The inaccessibility of the terrain and its secretive habits make this one of the more difficult animals to study in the wild. In the past decade, several ecological surveys were conducted in India, Nepal, China and Mongolia, which gave us information on the status and distribution of snow leopard (Jackson, Mallon, Fox, Schaller, Chundawat) A detailed study in Nepal through light on its secretive habits ( Jackson and Ahlborn, 1989). Even then little is known about its feeding habits. The present paper discusses this aspect from a study which was part of a detailed study conducted on the ecology of snow leopard in India from October 1987 to Feburary 1990.
|
Malik, M. M. (1997). The Current Status of Snow Leopards and Their Prey Status and Conservation of Snow Leopard in Pakistan. In R.Jackson, & A.Ashiq (Eds.), (pp. 11–20). Lahore, Pakistan: International Snow Leopard Trust.
|
Schaller, G. (1986). Surveys of Mountain Wildlife in China, Report # 4.
|
Jackson, P. (1998). Villagers save predatory snow leopard. Cat News, 28, 12.
Abstract: A short report is presented on the capture and relocation of a snow leopard in northern Pakistan. Villagers discovered the leopard attacking their goats and captured it. WWF-Gilgit relocated the leopard to a remote area. slj.
|
Jackson, R. (2000). Linking Snow Leopard Conservation and People-Wildlife Conflict Resolution, Summary of a multi-country project aimed at developing grass-roots measures to protect the endangered snow leopard from herder retribution. Cat News, 33, 12–15.
|
Koshkarev, E. P. (1984). Characteristics of snow leopard (Uncia uncia) movements in the Tien Shan. International Pedigree Book of Snow Leopards, 4, 15–21.
Abstract: Reports on a 3 yr winter study of snow leopard movements and activity, based on following tracks in the snow in Tien Shan Mountains of USSR. Travel route preference is examined with regard to snow and terrain characteristics, and prey abundance. Snow leopard kills of ibex and hare are noted
|
Koshkarev, E. (1994). Evaluation of the presence of snow leopard and ibex in Southern Siberia. In J.Fox, & D.Jizeng (Eds.), (pp. 17–27). Seattle/USA: Islt.
|
Scheber. (1975). Snow Leopard in the south part of Gobi-Altai mountain range.
Abstract: Accorfing to the information from Gurvan its rumored that the snow leopards grow in number and many times they attacked the livestock entering into the domestic area causing damage, we investigated theGurvan Tes sumon of Umnogobi aimag and also Noyon sumon todisplay the reserve review and spreading area of snow leopard from 22 of December of 1975 to 10th of January of 1976.
|
Fox, J. L. (1997). Conflict between predators and people in Ladakh. Cat News, 17, 18.
Abstract: During a six-week period in Hemis National Park, Ladakh, India, snow leopards killed 10 sheep and goats and one leopard gained access to a livestock pen and killed many of the animals inside. Dholes also killed sheep and goats, and a wolf killed a young horse. Residents routinely remove snow leopard cubs from their dens to limit future damage by this species. How to deal with the plight of the people living in the area while still protecting the endangered species are major concerns of the International Snow Leopard Trust, which manages Hemis National Park. lgh.
|
Panwar, H. S., Fox, J. L., Sinha, S. P., & Chundawat, R. S. (1986). Ecology of the Snow Loepard and Associated Prey in Central Ladakh.
|
Vyrypaev V.A. (1979). Ecologic prerequisites for predatory mammal conservation in the mountain biocenosis of the Issyk-Kul area.
Abstract: A decreasing number of predatory mammal species is connected with anthropogenic activity. Number of snow leopard is directly dependent on anthropogenic activity. A snow leopard population directly depends on food resources, such as ibex, marmot, rarer – argali and snow-cock in summer, and ibex, roe-deer, and rarer argali in winter.
|
Kattel, B., & Bajimaya, S. S. (1997). Status and Conservation of Snow Leopard in Nepal. In R.Jackson, & A.Ashiq (Eds.), (pp. 21–27). Lahore, Pakistan: International Snow Leopard Trust.
|
Mallon, D. (1984). The snow leopard in Ladakh. International Pedigree Book of Snow Leopards, 4, 23–37.
Abstract: Reports on 1 summer survey and four winter surveys covering some 3100 km in Ladakh, India. Reports on snow leopard sign commonly found, distribution, prey, attacks on livestock and peoples reaction, mortality factors and conservation status. Suggest recomendations for preventing unnecessary killing of snow leopards and estimates population of 100 to 200 snow leopards in Ladakh
|