|   | 
Details
   web
Records
Author Aryal, A.
Title Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal Type Report
Year 2009 Publication Abbreviated Journal
Volume Issue Pages (down) 1-53
Keywords Report; mortality; blue; blue sheep; blue-sheep; sheep; Pseudois; pseudois nayaur; Pseudois-nayaur; nayaur; Dhorpatan; hunting; reserve; Nepal; biodiversity; research; training; snow; snow leopard; snow-leopard; leopard; conservation; program; population; Population-Density; density; densities; change; Sex; study; area; High; poaching; Pressure; reducing; number; predators; predator; poison; wolf; wolves; canis; Canis-lupus; lupus; wild; wild boar; prey; prey species; prey-species; species; scats; scat; value; fox; cover; deer; diet; leopards; pika; snow leopards; snow-leopards; soil; Relationship
Abstract A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has

supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The Biodiversity Research and Training Forum (BRTF) Nepal. Email: savefauna@yahoo.com Submitted to Snow Leopard Conservation Grants Program, USA. Approved no
Call Number SLN @ rana @ 1064 Serial 104
Permanent link to this record
 

 
Author Jackson, R.
Title SSC Plan for Snow Leopard Type Miscellaneous
Year 1992 Publication Abbreviated Journal
Volume Issue Pages (down)
Keywords physiology; status; distribution; description; behavior; reproduction; mating; breeding; vocalization; gestation; biology; habitat; scrapes; sprays; scat; feces; longevity; homerange; home-range; prey; diet; Cites; Iunc; parks; preserves; reserves; refuge; protected-areas; movements; activity; livestock; herders; depredation; conflict; trade; poaching; hunting; research; captivity; management; zoos; Slims; surveys; transects; browse; home range; home; range; protected area; protected areas; protected; area; areas; 3920; plan; snow; snow leopard; snow-leopard; leopard
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Full Text at URL DRAFT – Revised September 22, 1992 by Rodney Jackson Approved no
Call Number SLN @ rana @ 201 Serial 450
Permanent link to this record
 

 
Author Hung, L.; Talipu; Hua, L.; Mingjiang, Q.; Schaller, G.B.
Title A Snow Leopard Survey in the Taxkorgan Region, XInjiang, China Type Miscellaneous
Year 1985 Publication Abbreviated Journal
Volume Issue Pages (down)
Keywords Taxkorgan; China; Xinjiang; field; study; browse; survey; K2; pamirs; prey; habitat; herders; scat; analysis; 4190
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Full text available at URL Approved no
Call Number SLN @ rana @ 407 Serial 390
Permanent link to this record
 

 
Author Henschel, P.; Ray, J.
Title Leopards in African Rainforests: Survey and Monitoring Techniques Type Miscellaneous
Year 2003 Publication Abbreviated Journal
Volume Issue Pages (down)
Keywords forest leopards; african rainforests; survey; monitoring techniques; lope reserve; gabon; central africa; congo; zaire; field testing; populations; wild meat; relative abundance; density; live-trapping; presence and absense surveys; ad-hoc survey; bushmeat; systematic survey; monitoring; individual identification; tracks; Discriminant Function Analysis; genotyping; scat; Hair; Dna; remote photography; camera trapping; capture rates; Trailmaster; Camtrakker; bait; duikers; pigs; elephant; bongo; okapi; human hunters; 5300
Abstract Monitoring Techniques Forest leopards have never been systematically surveyed in African forests, in spite of their potentially vital ecological role as the sole large mammalian predators in these systems. Because leopards are rarely seen in this habitat, and are difficult to survey using the most common techniques for assessing relative abundances of forest mammals, baseline knowledge of leopard ecology and responses to human disturbance in African forests remain largely unknown. This technical handbook sums up the experience gained during a two-year study of leopards by Philipp Henschel in the Lop‚ Reserve in Gabon, Central Africa, in 2001/2002, supplemented by additional experience from carnivore studies conducted by Justina Ray in southwestern Central African Republic and eastern Congo (Zaire) . The main focus of this effort has been to develop a protocol that can be used by fieldworkers across west and central Africa to estimate leopard densities in various forest types. In developing this manual, Henschel tested several indirect methods to assess leopard numbers in both logged and unlogged forests, with the main effort devoted to testing remote photography survey methods developed for tigers by Karanth (e.g., Karanth 1995, Karanth & Nichols 1998; 2000; 2002), and modifying them for the specific conditions characterizing African forest environments. This handbook summarizes the results of the field testing, and provides recommendations for techniques to assess leopard presence/absence, relative abundance, and densities in African forest sites. We briefly review the suitability of various methods for different study objectives and go into particular detail on remote photography survey methodology, adapting previously developed methods and sampling considerations specifically to the African forest environment. Finally, we briefly discuss how camera trapping may be used as a tool to survey other forest mammals. Developing a survey protocol for African leopards is a necessary first step towards a regional assessment and priority setting exercise targeted at forest leopards, similar to those carried out on large carnivores in Asian and South American forests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Wildlife Conservation Society
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rana @ 515 Serial 382
Permanent link to this record
 

 
Author Chundawat, R.S.
Title Studies on Snow Leopard and Prey Species in Hemis National Park Type Miscellaneous
Year 1993 Publication Abbreviated Journal
Volume xi Issue Pages (down)
Keywords Himalayas; India; protected-areas-network; flagship-species; Ladkh; Jammu; Kashmir; transects; field-study; research; scat; browse; 4670
Abstract
Address
Corporate Author Thesis
Publisher Islt Place of Publication Seattle Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Full Text at URLJournal Title: Snow Line Approved no
Call Number SLN @ rana @ 454 Serial 225
Permanent link to this record
 

 
Author Korablev, M. P., Poyarkov, A. D., Karnaukhov, A. S., Zvychaynaya, E. Y., Kuksin, A. N., Malykh, S. V., Istomov, S. V., Spitsyn, S. V., Aleksandrov, D. Y., Hernandez-Blanco, J. A., Munkhtsog, B., Munkhtogtokh, O., Putintsev, N. I., Vereshchagin, A. S., Becmurody, A., Afzunov, S., Rozhnov, V. V.
Title Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. Type Journal Article
Year 2021 Publication Conservation Genetics Abbreviated Journal
Volume Issue Pages (down)
Keywords Snow leopard, Panthera uncia, Microsatellites, Heterozygosity, Population structure, Noninvasive survey, Scat, Subspecies
Abstract The snow leopard (Panthera uncia Schreber, 1776) population in Russia and Mongolia is situated at the northern edge of the range, where instability of ecological conditions and of prey availability may serve as prerequisites for demographic instability and, consequently, for reducing the genetic diversity. Moreover, this northern area of the species distribution is connected with the western and central parts by only a few small fragments of potential habitats in the Tian-Shan spurs in China and Kazakhstan. Given this structure of the range, the restriction of gene flow between the northern and other regions of snow leopard distribution can be expected. Under these conditions, data on population genetics would be extremely important for assessment of genetic diversity, population structure and gene flow both at regional and large-scale level. To investigate large-scale and fine-grain population structure and levels of genetic diversity we analyzed 108 snow leopards identified from noninvasively collected scat samples from Russia and Mongolia (the northern part of the range) as well as from Kyrgyzstan and Tajikistan (the western part of the range) using panel of eight polymorphic microsatellites. We found low to moderate levels of genetic diversity in the studied populations. Among local habitats, the highest heterozygosity and allelic richness were recorded in Kyrgyzstan (He = 0.66 ± 0.03, Ho = 0.70 ± 0.04, Ar = 3.17) whereas the lowest diversity was found in a periphery subpopulation in Buryatia Republic of Russia (He = 0.41 ± 0.12, Ho = 0.29 ± 0.05, Ar = 2.33). In general, snow leopards from the western range exhibit greater genetic diversity (He = 0.68 ± 0.04, Ho = 0.66 ± 0.03, Ar = 4.95) compared to those from the northern range (He = 0.60 ± 0.06, Ho = 0.49 ± 0.02, Ar = 4.45). In addition, we have identified signs of fragmentation in the northern habitat, which have led to significant genetic divergence between subpopulations in Russia. Multiple analyses of genetic structure support considerable genetic differentiation between the northern and western range parts, which may testify to subspecies subdivision of snow leopards from these regions. The observed patterns of genetic structure are evidence for delineation of several management units within the studied populations, requiring individual approaches for conservation initiatives, particularly related to translocation events. The causes for the revealed patterns of genetic structure and levels of genetic diversity are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1633
Permanent link to this record