toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Khatiwada, J.R. & Chalise, M.K. url 
  Title Status of snow leopard and conflict perception in Kangchenjunga Conservation Area, Eastern Nepal Type Journal Article
  Year 2006 Publication Nepalese Journal of Zoology Abbreviated Journal  
  Volume 1 Issue 1 Pages (up) 1-8  
  Keywords Uncia uncia, Kangchenjunga Conservation Area, livestock depredation, blue sheep  
  Abstract Kangchenjunga Conservation Area (KCA) is situated in the Taplejung district at the north-eastern region of Nepal. Livestock keeping is the main activity of people for making a living amidst a conflict with snow leopard (Uncia uncia). Each year snow leopard kills a number of livestock resulting significant economic losses for the poor people living in this remote area. Unless the people – snow leopard conflicts is well understood and appropriate conflict management activities are implemented, the long run co-existence between people and snow leopard –especially the existence of snow leopard in this part of the world–will be in question. This has now become an utmost important as the aspiration of the people for economic development has risen significantly and the area has been open to tourism. Study was done by counting snow leopard signs walking systematically in total 18 snow leopard sign transects covering 18.01 km in length in three sites, i.e. Lonak, Khambachen and Dudhpokhari of the Conservation Area. The average sign density was 12.63/km. The livestock depredation by snow leopard for one year (2005-06) was studied by interviewing the herders to understand the responsible and specific bio-physical and economic factors. The study revealed that sub-adult yaks were mostly hunted by snow leopard. Cattle's' winter (December-April) pastures are most vulnerable sites for predation. Presence of bushes, forest and boulders and rugged mountain crevices make good hides for snow leopard. The study also showed that a lax animal guarding system was significantly responsible for high livestock depredation by snow leopard. Blue sheep was observed by walking in selected trails and from vantage points. A total of 354 individual sheep of different age and sex of 14 different herds were recorded during the study period. The study showed that improvement in livestock guarding system should be adopted as the most important activity. However despite the importance of livestock in the KCA it is still not well understood why the herders neglect for proper livestock guarding. Proper guarding system required in winter pastures to reduce the depredation pressure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes September Approved no  
  Call Number SLN @ rana @ Serial 1319  
Permanent link to this record
 

 
Author Aryal, A. url 
  Title Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal Type Report
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages (up) 1-53  
  Keywords Report; mortality; blue; blue sheep; blue-sheep; sheep; Pseudois; pseudois nayaur; Pseudois-nayaur; nayaur; Dhorpatan; hunting; reserve; Nepal; biodiversity; research; training; snow; snow leopard; snow-leopard; leopard; conservation; program; population; Population-Density; density; densities; change; Sex; study; area; High; poaching; Pressure; reducing; number; predators; predator; poison; wolf; wolves; canis; Canis-lupus; lupus; wild; wild boar; prey; prey species; prey-species; species; scats; scat; value; fox; cover; deer; diet; leopards; pika; snow leopards; snow-leopards; soil; Relationship  
  Abstract A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has

supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The Biodiversity Research and Training Forum (BRTF) Nepal. Email: savefauna@yahoo.com Submitted to Snow Leopard Conservation Grants Program, USA. Approved no  
  Call Number SLN @ rana @ 1064 Serial 104  
Permanent link to this record
 

 
Author Ghoshal, A., Bhatnagar, Y. V., Pandav, B., Sharma, K., Mshra, C. url 
  Title Assessing changes in distribution of the Endangered snow leopard Panthera uncia and its wild prey over 2 decades in the Indian Himalaya through interviewbased occupancy surveys Type Journal Article
  Year 2017 Publication Oryx Abbreviated Journal  
  Volume Issue Pages (up) 1-13  
  Keywords Asiatic ibex, blue sheep, carnivore, occupancy, snow leopard, survey, threat, ungulate  
  Abstract Understanding species distributions, patterns of

change and threats can form the basis for assessing the conservation

status of elusive species that are difficult to survey.

The snow leopard Panthera uncia is the top predator of the

Central and South Asian mountains. Knowledge of the distribution

and status of this elusive felid and its wild prey is

limited. Using recall-based key-informant interviews we estimated

site use by snow leopards and their primary wild

prey, blue sheep Pseudois nayaur and Asiatic ibex Capra

sibirica, across two time periods (past: �; recent:

�) in the state of Himachal Pradesh, India. We

also conducted a threat assessment for the recent period.

Probability of site use was similar across the two time periods

for snow leopards, blue sheep and ibex, whereas for wild

prey (blue sheep and ibex combined) overall there was an

% contraction. Although our surveys were conducted in

areas within the presumed distribution range of the snow

leopard, we found snow leopards were using only % of

the area (, km). Blue sheep and ibex had distinct distribution

ranges. Snow leopards and their wild prey were not

restricted to protected areas, which encompassed only %

of their distribution within the study area. Migratory livestock

grazing was pervasive across ibex distribution range

and was the most widespread and serious conservation

threat. Depredation by free-ranging dogs, and illegal hunting

and wildlife trade were the other severe threats. Our

results underscore the importance of community-based, landscape-

scale conservation approaches and caution against reliance

on geophysical and opinion-based distribution maps that have been used to estimate national and global snow leopard ranges.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1463  
Permanent link to this record
 

 
Author Shrestha, B. url 
  Title Prey Abundance and Prey Selection by Snow Leopard (uncia uncia) in the Sagarmatha (Mt. Everest) National Park, Nepal Type Report
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages (up) 1-35  
  Keywords project; snow; snow leopard; snow-leopard; leopard; network; conservation; program; prey; abundance; selection; uncia; Uncia uncia; Uncia-uncia; Sagarmatha; national; national park; National-park; park; Nepal; resource; predators; predator; ecological; impact; region; community; structure; number; research; population; status; density; densities; wild; prey species; prey-species; species; Himalayan; tahr; musk; musk-deer; deer; game; birds; diet; livestock; livestock depredation; livestock-depredation; depredation; awareness; co-existence; ungulates; ungulate; Human; using; areas; area; monitoring; transect; Hair; identification; scat; attack; patterns; sighting; 1760; populations; birth; Male; Female; young; domestic; domestic livestock; 120; scats; yak; Dog; pika; wildlife; Seasons; winter; horse; study; cover; land; predation; Pressure; development; strategy; threatened; threatened species; threatened-species; conflicts; conflict; people; control; husbandry; compensation; reintroduction; blue; blue sheep; blue-sheep; sheep; free ranging  
  Abstract Predators have significant ecological impacts on the region's prey-predator dynamic and community structure through their numbers and prey selection. During April-December 2007, I conducted a research in Sagarmatha (Mt. Everest) National Park (SNP) to: i) explore population status and density of wild prey species; Himalayan tahr, musk deer and game birds, ii) investigate diet of the snow leopard and to estimate prey selection by snow leopard, iii) identify the pattern of livestock depredation by snow leopard, its mitigation, and raise awareness through outreach program, and identify the challenge and opportunities on conservation snow leopard and its co-existence with wild ungulates and the human using the areas of the SNP. Methodology of my research included vantage points and regular monitoring from trails for Himalayan tahr, fixed line transect with belt drive method for musk deer and game birds, and microscopic hair identification in snow leopard's scat to investigate diet of snow leopard and to estimate prey selection. Based on available evidence and witness accounts of snow leopard attack on livestock, the patterns of livestock depredation were assessed. I obtained 201 sighting of Himalayan tahr (1760 individuals) and estimated 293 populations in post-parturient period (April-June), 394 in birth period (July -October) and 195 November- December) in rutting period. In average, ratio of male to females was ranged from 0.34 to 0.79 and ratio of kid to female was 0.21-0.35, and yearling to kid was 0.21- 0.47. The encounter rate for musk deer was 1.06 and density was 17.28/km2. For Himalayan monal, the encounter rate was 2.14 and density was 35.66/km2. I obtained 12 sighting of snow cock comprising 69 individual in Gokyo. The ratio of male to female was 1.18 and young to female was 2.18. Twelve species (8 species of wild and 4 species of domestic livestock) were identified in the 120 snow leopard scats examined. In average, snow leopard predated most frequently on Himalayan tahr and it was detected in 26.5% relative frequency of occurrence while occurred in 36.66% of all scats, then it was followed by musk deer (19.87%), yak (12.65%), cow (12.04%), dog (10.24%), unidentified mammal (3.61%), woolly hare (3.01%), rat sp. (2.4%), unidentified bird sp. (1.8%), pika (1.2%), and shrew (0.6%) (Table 5.8 ). Wild species were present in 58.99% of scats whereas domestic livestock with dog were present in 40.95% of scats. Snow leopard predated most frequently on wildlife species in three seasons; spring (61.62%), autumn (61.11%) and winter (65.51%), and most frequently on domestic species including dog in summer season (54.54%). In term of relative biomass consumed, in average, Himalayan tahr was the most important prey species contributed 26.27% of the biomass consumed. This was followed by yak (22.13%), cow (21.06%), musk deer (11.32%), horse (10.53%), wooly hare (1.09%), rat (0.29%), pika (0.14%) and shrew (0.07%). In average, domestic livestock including dog were contributed more biomass in the diet of snow leopard comprising 60.8% of the biomass consumed whilst the wild life species comprising 39.19%. The annual prey consumption by a snow leopard (based on 2 kg/day) was estimated to be three Himalayan tahr, seven musk deer, five wooly hare, four rat sp., two pika, one shrew and four livestock. In the present study, the highest frequency of attack was found during April to June and lowest to July to November. The day of rainy and cloudy was the more vulnerable to livestock depredation. Snow leopard attacks occurred were the highest at near escape cover such as shrub land and cliff. Both predation pressure on tahr and that on livestock suggest that the development of effective conservation strategies for two threatened species (predator and prey) depends on resolving conflicts between people and predators. Recently, direct control of free – ranging livestock, good husbandry and compensation to shepherds may reduce snow leopard – human conflict. In long term solution, the reintroduction of blue sheep at the higher altitudes could also “buffer” predation on livestock.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Project funded by Snow Leopard Network's Snow Leopard Conservation Grant Program. Forum of Natural Resource Managers, Nepal. Approved no  
  Call Number SLN @ rana @ 1076 Serial 887  
Permanent link to this record
 

 
Author Hanson, J. H., Schutgens, M., Lama, R.P., Aryal, A., Dhakal, M. url 
  Title Local attitudes to the proposed translocation of blue sheep Pseudois nayaur to Sagarmatha National Park, Nepal Type Journal Article
  Year 2018 Publication Fauna & Flora International Abbreviated Journal  
  Volume Issue Pages (up) 1-7  
  Keywords Attitudes, blue sheep, human&wildlife conflict, Panthera uncia, Pseudois nayaur, Sagarmatha National Park, snow leopard, translocation  
  Abstract Translocations are an important tool for the conservation

of biodiversity, but although ecological feasibility

studies are frequently conducted prior to implementation,

social feasibility studies that consider how local communities

perceive such projects are less common. The translocation

of blue sheep Pseudois nayaur to Sagarmatha National

Park, Nepal, has been proposed, to reduce livestock depredation

by snow leopards Panthera uncia by providing an alternative

prey base in addition to the small population of

Himalayan thar Hemitragus jemlahicus. This study used

systematic sampling, a quantitative questionnaire and qualitative

interviews within the Park to provide data on the social

viability of the proposed translocation. Quantitative

analysis revealed moderate levels of support but qualitative

analysis suggested that there are significant concerns about

the proposal. In addition,multiple regression analysis found

that women and livestock owners were significantly less

supportive, although the model had low explanatory

power. Potential crop damage and competition for forage

were frequently cited as concerns, especially amongst

those with a high level of dependence on natural resources.

Given the mixed response to the proposed translocation of

blue sheep to the Everest region, alleviating the reservations

of local residents is likely to be key to any further consultation,

planning or implementation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1475  
Permanent link to this record
 

 
Author Thapa, K., Schmitt, N., Pradhan, N. M. B., Acharya, H. R., Rayamajhi, S. pdf 
  Title No silver bullet? Snow leopard prey selection in Mt. Kangchenjunga, Nepal Type Journal Article
  Year 2021 Publication Ecology and Evolution Abbreviated Journal  
  Volume Issue Pages (up) 1-13  
  Keywords blue sheep, common leopard, fecal, genetic analysis, snow leopard, wolf, yak  
  Abstract In this study, we investigated the impact of domestic and wild prey availability on snow leopard prey preference in the Kangchenjunga Conservation Area of eastern Nepal-a region where small domestic livestock are absent and small wild ungulate prey are present. We took a comprehensive approach that combined fecal genetic sampling, macro- and microscopic analyses of snow leopard diets, and direct observation of blue sheep and livestock in the KCA. Out of the collected 88 putative snow leopard scat samples from 140 transects (290km) in 27 (4x4km2) sampling grid cells, 73 (83%) were confirmed to be from snow leopard. The genetic analysis accounted for 19 individual snow leopards (10 males and 9 females), with a mean population size estimate of 24 (95% CI: 19-29) and an average density of 3.9 snow leopards/100km2 within 609km2. The total available prey biomass of blue sheep and yak was estimated at 355,236 kg (505 kg yak/km2 and 78kg blue sheep/km2). From the available prey biomass, we estimated snow leopards consumed 7% annually, which comprised wild prey (49%), domestic livestock (45%). and 6% unidentified items. the estimated 47,736 kg blue sheep biomass gives a snow leopard-to-blue sheep ratio of 1:59 on a weight basis. The high preference of snow leopard to domestic livestock appears to be influenced by a much smaller available biomass of wild prey then in other regions of Nepal (e.g., 78kg/km2 in the KCA compared with a range of 200-300 kg/km2 in other regions of Nepal?. Along with livestock insurance scheme improvement, there needs to be a focus on improved livestock guarding, predator-proof corrals as well as engaging and educating local people to be citizen scientists on the importance of snow leopard conservation, involving them in long-term monitoring programs and promotion of ecotourism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1665  
Permanent link to this record
 

 
Author Khatiwada, J.R.; Chalise, M.K.; Kyes, R. url 
  Title Survey of Snow Leopard (Uncia uncia) and Blue Sheep (Pseudois nayaur) populations in the Kangchenjunga Conservation Area (KCA), Nepal. Final report Type Report
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages (up) 1-13  
  Keywords survey; snow; snow leopard; snow-leopard; leopard; uncia; Uncia uncia; Uncia-uncia; blue; blue sheep; blue-sheep; sheep; Pseudois; pseudois nayaur; Pseudois-nayaur; nayaur; populations; population; conservation; area; Nepal; Report; study; information; management; system; Slims; relative abundance; abundance; transects; transect; length; sign; scrapes; scrape; 20; feces; scent; pugmarks; hairs; Hair; using; livestock; livestock depredation; livestock-depredation; depredation; patterns; herders; herder; snow leopards; snow-leopards; leopards; Animals; Animal  
  Abstract This study was carried out in the Kangchenjunga Conservation Area (KCA), Eastern Nepal from Feb – Nov 2007. We used the Snow Leopard Information Management System, SLIMS (second order survey technique) to determine the relative abundance of snow leopard in the upper part of KCA. Altogether, 36 transects (total length of 15.21 km) were laid down in the major three blocks of KCA. 104 Signs (77 scrapes, 20 feces, 2 Scent mark, 3 Pugmarks and 2 hairs) were recorded. Fixed-point count method was applied for blue sheep from appropriate vantage points. We counted total individual in each herd using 8x42 binocular and 15-60x spotting scope. A total of 43 herds and 1102 individuals were observed in the area. The standard SLIMS questionnaire was conducted to find out relevant information on livestock depredation patterns. Out of 35 households surveyed in KCA, 48% of herders lost livestock due to snow leopards. A total of 21 animals were reportedly lost due to snow leopards from August to September 2007.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Project funded by Snow Leopard Network's Snow Leopard Conservation Grant Program. Approved no  
  Call Number SLN @ rana @ 1070 Serial 533  
Permanent link to this record
 

 
Author Lu, Q., Xiao, L., Cheng, C., Lu, Z., Zhao, J., Yao, M. pdf 
  Title Snow Leopard Dietary Preferences and Livestock Predation Revealed by Fecal DNA Metabarcoding: No Evidence for Apparent Competition Between Wild and Domestic Prey Type Journal Article
  Year 2021 Publication Frontiers in Ecology and Evolution Abbreviated Journal  
  Volume 9 Issue 783546 Pages (up) 1 - 14  
  Keywords apparent mutualism, blue sheep, feeding habits, molecular dietary analysis, human-carnivore conflict, prey selection, Sanjiangyuan  
  Abstract Accurate assessments of the patterns and drivers of livestock depredation by wild carnivores are vital for designing effective mitigation strategies to reduce human-wildlife conflict. Snow leopard’s (Panthera uncia) range extensively overlaps pastoralist land- use and livestock predation there is widely reported, but the ecological determinants of livestock consumption by snow leopards remain obscure. We investigated snow leopard dietary habits at seven sites across the Sanjiangyuan region of the Qinghai– Tibetan Plateau (QTP), an area central to the species’ global range. Snow leopard abundance, wild prey composition, and livestock density varied among those sites, thus allowing us to test the effects of various factors on snow leopard diet and livestock predation. Using DNA metabarcoding, we obtained highly resolved dietary data from 351 genetically verified snow leopard fecal samples. We then analyzed the prey preferences of snow leopards and examined ecological factors related to their livestock consumption. Across the sites, snow leopard prey was composed mainly of wild ungulates (mean = 81.5% of dietary sequences), particularly bharal (Pseudois nayaur), and supplemented with livestock (7.62%) and smaller mammals (marmots, pikas, mice; 10.7%). Snow leopards showed a strong preference for bharal, relative to livestock, based on their densities. Interestingly, both proportional and total livestock consumption by snow leopards increased linearly with local livestock biomass, but not with livestock density. That, together with a slight negative relationship with bharal density, supports apparent facilitation between wild and domestic prey. We also found a significant positive correlation between population densities of snow leopard and bharal, yet those densities showed slight negative relationships with livestock density. Our results highlight the importance of sufficient wild ungulate abundance to the conservation of viable snow leopard populations. Additionally, livestock protection is critically needed to reduce losses to snow leopard depredation, especially where local livestock abundances are high.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1675  
Permanent link to this record
 

 
Author Thapa, K. url 
  Title Is their any correlation between abundance of blue sheep population and livestock depredation by snow leopards in the Phu Valley, Manang District, Annapurna Conservation Area? Final report Type Report
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages (up) 1-19  
  Keywords abundance; blue; blue sheep; blue-sheep; sheep; population; livestock; livestock depredation; livestock-depredation; depredation; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; valley; Manang; annapurna; annapurna conservation area; Annapurna-Conservation-Area; conservation; area; Report; project; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; Nepal  
  Abstract This study was undertaken in the Phu valley of Manang district in the Annapurna Conservation Area, Nepal,

Spring, 2004 and 2005. I used the Snow Leopard Management Information System (“second order” survey technique), to determine

the relative abundance of snow leopards in delineated areas in Phu valley. Transects routes were plotted by

randomly selected feasible landforms such as along ridgelines, cliff bases and river bluffs where snow

leopards sign is likely to be found. Altogether, 16 transects (total length of 7.912 km) were laid down (mean

transect length=0.495 km). They revealed, 54 sign sites (both relic and non-relic) and altogether 88 signs (72

scrapes, 11 feces, 3 scent mark, 2 pugmarks and 1 hair) were recorded (6.8 site/km and 11.1 signs/km). There

were 61.1% non-relic and 38.9% relic sites. The density of snow leopards in Phu Valley may be 4-5 snow

leopards/100 kmý.It was found that the Ghyo block had the highest sign density (13.6 mean sign item/km)

and Phu block (9.8 mean sign item/km) and the lowest in Ngoru block (3.9 mean sign item/km.). For blue sheep, direct count method was applied from different appropriate vantage points (fixed-point

count). I counted total individuals in each herd and classified all individuals whenever possible, using 8 X24

binocular and 15-60x spotting scope. A total 37 blue sheep herds and 1209 individuals were observed in

192.25 kmý of the study area (blue sheep density, 6.3 kmý). Average herd size was 32.68. Herd size varied

from 1 to 103 animals (the largest so far recorded). The average sex ratio male to female for the entire survey

area was 0.67. Recruitment rate was 47.13. The ratio of yearlings to adult female was 0.45. In Ghyo block

had total 168 blue sheep (area, 44.08 km2 or 3.8/ km2 i.e. 137.2 kg/ kmý). Blue sheep density in Ngoru block

showed 4.7/km2 (area, 65.47 km2). Highest density of blue sheep among three blocks was recorded in Phu

block, 8.9/km2 (or 320 kg/km2) in its 82.70 km2 area. A standard questionnaire was designed, and interviews conducted for relevant information was collected on

livestock depredation patterns (total household survey). Out of 33 households surveyed, 30 reported that they

had livestock depredation by the snow leopard in 2004. Altogether 58 animals were reportedly lost to snow

leopards (3.1% of the total mortality). Out of the estimated standing available biomass (1, 83,483kg) in the

Phu valley at least 2220 kg or 1.3% of the total livestock biomass was consumed by snow leopards in the

year of our study (2004). It was estimated that in the Phu valley annually 1.8 animals were lost per household

to snow leopards. This means approx. Rs.413560 (US$ 5,908) is lost annually in the valley (US$

179/household/annum). Ghyo block, had the highest animals loss (53.4%), followed by Phu block (36.2%)

and Ngoru block (10.3%) to snow leopards. There is positive correlation among the densities of blue sheep, relative abundance of the snow leopard and

livestock depredation. Blue sheep is the main prey species of the snow leopard in Phu valley and its

conservation therefore matters to reduce livestock depredation. A general patterns appears here that shows

that blue sheep (prey) abundance determine snow leopard (predator) abundance and that livestock

depredation by snow leopards may be minimal where there is good population of blue sheep, and vice versa.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Project funded by International Snow Leopard Trust Small Grants Program, 2005. Annapurna Conservation Area Project, Pokhara, Nepal. Approved no  
  Call Number SLN @ rana @ 1078 Serial 959  
Permanent link to this record
 

 
Author The Snow Leopard Conservancy url 
  Title Visitor Satisfaction and Opportunity Survey, Manang, Nepal: Market Opportunities for Linking Community-Based Ecotourism with the Conservation of Snow Leopards in the Annpurna Conservation Area. Report prepared for WWF-Nepal Programme Type Report
  Year 2002 Publication Abbreviated Journal  
  Volume SLC Field Document Series No 3 Issue Pages (up) 1-18  
  Keywords survey; Manang; Nepal; linking; community-based; ecotourism; conservation; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; area; Report; valley; trekking; Southern; annapurna; Tibet; landscape; mountain; Culture; region; habitat; endangered; High; density; densities; abundance; blue; blue sheep; blue-sheep; sheep; primary; large; prey; prey species; prey-species; species; Himalayan; mountains; tibetan; tibetan plateau; tibetan-plateau; plateau  
  Abstract For the past two decades, the Manang or Nyeshang Valley has become one of the most popular

trekking routes in Nepal, attracting over 15,000 trekkers annually (Ale, 2001). The 21-day

circular trek takes the visitor from the lush southern slopes of the Annapurna massif around to

its dry northern slopes more reminiscent of Tibet, through a landscape of spectacular mountain

scenes, interesting villages and diverse cultures. The Manang region also offers prime habitat

for the endangered snow leopard, supporting an estimated 4.8 – 6.7 snow leopards per 100 sq.

km (Oli 1992). This high density has been attributed to the abundance of blue sheep, the snow

leopard's primary large prey species across the Himalayan Mountains and Tibetan Plateau.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 1021 Serial 961  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: