Manati, A. R. (2008). Fur trade of large cats and the question of the subspecies status of leopards in Afghanistan (Der Handel mit Fellen von Grosskatzen und die Abklärung der Unterartenfrage beim. Germany: University of Köln.
Abstract: Over a time of four years the bazars of Afghanistan were surveyed for furs of spotted wild cats, in particular leopards and snow leopards. In 2004 in Kabul a total of 28 furs of leopards were purchased by shopkeepers and 21 sold at an average price of 825 $. In the same year 25 furs of snow leopards were purchased and 19 sold to clients at an average price of 583 $. In 2006 at a single inspection double as many furs of leopards were found to be offered for sale in comparison to the whole year of 2004. Also prices had increased over the two years by 20 % to an average of 1037 $. Similarly the number of furs of snow leopards at 21 pieces was higher than in 2004, and the prices had increased to an average of 652 $. In 2007 investigations rendered more difficult, because the authorities had started to control the fur trade, and the results are not unequivocal. Clients were without any exception foreigners.
Surveys in 2004 in Mazar-e-Sharif, Kunduz, Takhar and Faiz Abad, in 2006 additionally in Baharak and Iskashem in the province of Badakhshan, revealed a regular trade in furs of spotted cats, however not as extensive as in Kabul. The most interesting finding was a fur of a cheetah in Mazar-e-Sharif, the first record of this species after 35 years.
From the surveys can be concluded that leopards still exist in the whole range of its distribution area in Afghanistan. However they don't allow any conclusion on the population size and its threat by hunting. In contrast to the leopard there exists a recent estimation of the population size of the snow leopard, saying that there are still 100 to 200 snow leopards living in Afghanistan. On the basis of these figures as well as the numbers of furs traded annually a Population and Habitat Viability Analysis was conducted. The result of this analysis is alarming. It has to be assumed that the snow leopard will be extinct in Afghanistan within the next ten years. To improve the protection of spotted cats in Afghanistan it needs both, a better implementation of the existing legislation as well as an awareness campaign among potential clients, i. e. foreigners living in Afghanistan.
The second part of this thesis deals with the question of subspecies of leopards in Afghanistan. Out of the 27 subspecies described four are believed to exist in Afghanistan. However, according to a molecularbiological revision of the species there occurs only one subspecies in Afghanistan, Panthera pardus saxicolor. To clarify the subspecies question various measures of furs had been taken in the bazars. The results revealed that the leopards in Afghanistan are the biggest of its species. However a further differentiation according to the area of origin within the country was not possible. Also the traditional differentiation on the basis of colours and patterns on the furs was not possible.
In contrast to the molecularbiological investigations published not only samples of zoo animals were available in this study but also samples from the wild. The own results confim that almost all leopards from Afghanistan and Iran belong to one and the same subspecies, P. p. saxicolor. Only in the most eastern part of Afghanistan, the Indian leopard, Panthera pardus fusca, can be found. The International Studbook for the Persian Leopard was analysed. The whole population derives from a few founder animals, which were imported in the midth fifties from Iran and in the late sixties from Afghanistan. To avoid inbreeding later on the Iranian and the Afghan lines were mixed. A female imported in 1968 from Kabul to Cologne is represented in each of the more than 100 today living animals.Mixing the two lines subsequently is justified by the genetic results of this study. Recently acquired animals from the Caucasus, however, should be tested genetically before integrating them into the zoo population.
|
Jackson, R., & Fox, J. L. (1997). Snow Leopard Conservation: Accomplishments and Research Priorities. In R.Jackson, & A.Ahmad (Eds.), (pp. 128–144). Pakistan: Islt.
|
Wharton, D., & Freeman, H. (1988). The Snow Leopard in North America: Captive Breeding Under the Species Survival PLan. In H.Freeman (Ed.), (pp. 131–136). India: International Snow Leoaprd Trust and WIldlife Institute of India.
|
Bangjie, T., & Bingxing, Q. (1994). The Status and Problems of Snow Leopards in Captivity in China. In J.L.Fox, & D.Jizeng (Eds.), (pp. 149–156). Usa: Islt.
|
Bangjie, T., & Yanfa, L. (1988). The Status of Captive Snow Leopards in China. In H.Freeman (Ed.), (pp. 151–166). India: International Snow Leopard Trust and Wildlife Institute of India.
|
Trepanier, L. A., Cribb, A. E., Spielberg, S. P., & Ray, K. (1998). Deficiency of cytosolic arylamine N-acetylation in the domestic cat and wild felids caused by the presence of a single NAT1-like gene. Pharmacogenetics, 8(2), 169–179.
Abstract: The purpose of this study was to determine the molecular basis for a relative deficiency in the cat of cytosolic arylamine N- acetyltransferase (NAT), an enzyme family that is important in the metabolism of xenobiotics and that normally consists of at least two related enzymes, NAT1 and NAT2. N-acetyltransferase in feline liver showed high affinity (mean Km = 2.1 microM) for p-aminobenzoic acid, an NAT1 selective substrate in humans and rabbits, but showed a very poor affinity (mean Km > 10 mM) for sulfamethazine, an NAT2 selective substrate in humans and rabbits. Immunoreactive N-acetyltransferase was detected in feline liver, bladder and colon using an NAT1-specific antipeptide antibody, but was not detected in any tissues using an NAT2- specific antibody. Southern blot analysis of genomic DNA demonstrated a single band in domestic cats using each of six restriction digests; single bands were also found on Southern blot analysis of six wild felids. The deduced amino acid sequence of the central portion of feline N-acetyltransferase, obtained by polymerase chain reaction amplification in both domestic cats and seven wild felids (lion, tiger, lynx, snow leopard, bobcat, Asian leopard cat and cheetah), contained three residues, Phe125, Arg127, and Tyr129, which determine NAT1-like substrate specificity in humans. These results support the conclusion that cytosolic arylamine N-acetylation activity is low in the cat because of the presence of a single N-acetyltransferase that has substrate specificity, immunogenicity and sequence characteristics similar to human NAT1, and that the unusual presence of only a single N- acetyltransferase gene appears to be a family wide trait shared by other felids.
|
Blomqvist, L. (1995). Three decades of Snow Leopards Panthera uncia in Captivity. Int.Zoo Yearbook, 34, 178–185.
Abstract: The author reports the status of the captive population of snow leopards over the last three decades. Genetic and demographic information is also provided. The captive population as of 1992 was 541 leopards. klf. I
|
Kuzminikh, I. (1994). Notes on the status of captive snow leopards in regions of the former Soviet Union. In J.L.Fox, & D.Jizeng (Eds.), (199). Usa: Islt.
|
Graham, L. H., Goodrowe, K. L., Raeside, J. I., & Liptrap, R. M. (1995). Non-invasive monitoring of ovarian function in several felid species by measurement of fecal estradiol-17-beta and progestins. Zoo Biology, 14(3), 223–237.
Abstract: An extraction and assay procedure to measure fecal estradiol-17-beta and progestin concentrations in several cat species was developed and validated for use for noninvasive monitoring of ovarian function. Fecal samples were collected over a range of 3-20 months from female tigers (three), lions (three), snow leopards (three), cheetahs (two), caracals (two), and domestic cats (five). Samples were extracted with 90% methanol, lipids removed with petroleum ether, and the estradiol and progestins in the methanol measured by radioimmunoassay (RIA). High Performance Liquid Chromatography (HPLC) fractionation and subsequent RIA of the fractions indicated that the estradiol-17-beta antiserum cross-reacted primarily with estradiol-17-beta in the feces of lions and tigers and was assumed to be specific for estradiol-17-beta in the feces of other species as well. However, there were several immunoreactive compounds, presumably progesterone metabolites, excreted in the feces which varied both quantitatively and qualitatively among species. The behavior of tigers, lions, cheetahs, and caracals was visually monitored during the collection period and frequency of sexual behaviors was positively correlated with increases in fecal estradiol in all species observed. The mean fecal estradiol-17-beta peaks were as follows: tigers, 128.0 +- 13.1; lions, 186.0 +- 14.8; snow leopards, 136.7 +- 15.9; cheetahs, 140.9 +- 9.0; caracals, 24.5 +- 4.0; and domestic cats 158.9 +- 19.3 ng/gm. Fecal progestin concentrations rose significantly (P lt 0,001) only after breeding or during pregnancy and were as follows: tigers, 5.6 +- 0.6; lions, 1.9 +- 0.1; cheetahs, 8.4 +- 1.1; and caracals, 2.4 +- 0.4 mu-g/gm. Fecal progestins were elevated for one-half to two-thirds of the gestation length during presumed pseudopregnancy but remained elevated throughout successful pregnancies. These results suggest that ovarian function can be monitored noninvasively in the family Felidae by the measurement of fecal estradiol-17-beta and progestin concentrations.
|
Roth, T. L., Swanson, W. F., & Wildt, D. E. (1995). Snow leopard (Panthera unica) sperm longevity in vitro is not influenced by protein or energy source supplements but is affected by buffer source. Theriogenology, 43(1), 309.
|