|   | 
Details
   web
Records
Author Li, J., Weckworth, B. V., McCarthy, T. M., Liang, X., Liu, Y., Xing, R., Li, D., Zhang, Y., Xue, Y., Jackson, R., Xiao, L., Cheng, C., Li, S., Xu, F., Ma, M., Yang, X., Diao, K., Gao, Y., Song, D., Nowell, K., He, B., Li, Y., McCarthy, K., Paltsyn, M. Y., Sharma, K., Mishra, C., Schaller, G. B., Lu, Z., Beissinger, S. R.
Title Defining priorities for global snow leopard conservation landscapes Type Journal Article
Year 2019 Publication Biological Conservation Abbreviated Journal
Volume 241 Issue 108387 Pages 1-10
Keywords Panthera uncia, Conservation prioritization, Landscape Conservation Unit, Connectivity, Linkage
Abstract The snow leopard (Panthera uncia) is an apex predator on the Tibetan Plateau and in the surrounding mountain ranges. It is listed as Vulnerable in the IUCN's Red List. The large home range and low population densities of this species mandate range-wide conservation prioritization. Two efforts for range-wide snow leopard conservation planning have been conducted based on expert opinion, but both were constrained by limited knowledge and the difficulty of evaluating complex processes, such as connectivity across large landscapes. Here, we compile > 6000 snow leopard occurrence records from across its range and corresponding environmental covariates to build a model of global snow leopard habitat suitability. Using spatial prioritization tools, we identi!ed seven large continuous habitat patches as global snow leopard Landscape Conservation Units (LCUs). Each LCU faces differing threat levels from poaching, anthropogenic development, and climate change. We identi!ed ten po- tential inter-LCU linkages, and centrality analysis indicated that Tianshan-Pamir-Hindu Kush-Karakorum, Altai, and the linkage between them play a critical role in maintaining the global snow leopard habitat connectivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1490
Permanent link to this record
 

 
Author Johansson, O., Alexander, J. S., Lkhagvajav, P., Mishra, C., Samelius, G.
Title Natal dispersal and exploratory forays through atypical habitat in the mountain-bound snow leopard Type Journal Article
Year 2024 Publication Ecology Abbreviated Journal
Volume 2024 Issue e4264 Pages 1-4
Keywords connectivity, Gobi Desert, landscape permeability, Mongolia, Panthera uncia, resistance, steppe
Abstract Understanding how landscapes affect animal movements is key to effective conservation and management (Rudnick et al., 2012; Zeller et al., 2012). Movement defines animal home ranges, where animals generally access resources such as food and mates, and also their dispersal and exploratory forays. These movements are important for individual survival and fitness through genetic exchange within and between populations and for colonization of unoccupied habitats (Baguette et al., 2013; MacArthur & Wilson, 1967). Dispersal and exploratory movements typically occur when young animals leave their natal range and establish more permanent home ranges (Greenwood, 1980; Howard, 1960). In mammals, natal dispersal of males is usually more frequent and happens over greater distances compared with that of females (Clobert et al., 2001; Greenwood, 1980).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1742
Permanent link to this record
 

 
Author Tallian, A., Mattisson, J., Samelius, G., Odden, J., Mishra, C., Linnell, J. D. C., Lkhagvajav, P., Johansson, O.
Title Wild versus domestic prey: Variation in the kill-site behavior of two large felids Type Journal Article
Year 2023 Publication Global Ecology and Conservation Abbreviated Journal
Volume 47 Issue e026750 Pages 1-13
Keywords Eurasian lynx, Handling time, Landscape, Livestock, Predation, Snow leopard
Abstract Livestock depredation is an important source of conflict for many terrestrial large carnivore

species. Understanding the foraging behavior of large carnivores on domestic prey is therefore

important for both mitigating conflict and conserving threatened carnivore populations. Handling

time is an important, albeit often overlooked, component of predatory behavior, as it directly

influences access to food biomass, which can affect predator foraging efficiency and subsequent

kill rates. We used long-term data on snow leopards (Panthera uncia) in Mongolia (Asia) and

Eurasian lynx (Lynx lynx) in Norway (Europe) to examine how large carnivore foraging patterns

varied between domestic and wild prey, and how the different landscape characteristics affected

those patterns. Our results suggest handling time was generally shorter for domestic compared to

wild prey. For snow leopards, rugged terrain was linked to increased handling time for larger

prey. For lynx, handling time increased with terrain ruggedness for domestic, but not wild, prey,

and was greater in closed compared to open habitats. There were also other differences in snow

leopard and lynx foraging behavior, e.g., snow leopards also stayed longer at, and remained closer

to, their kill sites than lynx. Shorter handling time suggests that felids may have utilized domestic

prey less effectively than wild prey, i.e., they spent less time consuming their prey. This could a)

result in an energetic or fitness cost related to decreased felid foraging efficiency caused by the

risk of anthropogenic disturbance, or b) exacerbate conflict if reduced handling time associated

with easy prey results in increased livestock depredation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1737
Permanent link to this record
 

 
Author Atzeni, L., Wang, J., Riordan, P., Shi, K., Cushman, S. A.
Title Landscape resistance to gene flow in a snow leopard population from Qilianshan National Park, Gansu, China Type Journal Article
Year 2023 Publication Landscape Ecology Abbreviated Journal
Volume Issue Pages
Keywords Landscape genetics · MLPE · Gene flow · Genetic distance · Isolation by distance · Isolation by resistance · Landscape resistance · Snow leopard · Principal component analysis
Abstract Context: The accurate estimation of landscape resistance to movement is important for ecological understanding and conservation applications. Rigorous estimation of resistance requires validation and optimization. One approach uses genetic data for the optimization or validation of resistance models. Objectives We used a genetic dataset of snow leopards from China to evaluate how landscape genetics resistance models varied across genetic distances and spatial scales of analysis. We evaluated whether landscape genetics models were superior to models of resistance derived from habitat suitability or isolation-by-distance.

Methods: We regressed genetically optimized, habitat-based, and isolation-by-distance hypotheses against genetic distances using mixed effect models. We explored all subset combinations of genetically optimized variables to find the most supported resistance scenario for each genetic distance.

Results: Genetically optimized models always out-performed habitat-based and isolation-by-distance hypotheses. The choice of genetic distances influenced the apparent influence of variables, their spatial scales and their functional response shapes, producing divergent resistance scenarios. Gene flow in snow leopards was largely facilitated by areas of intermediate ruggedness at intermediate elevations corresponding to small-to-large valleys within and between the mountain ranges.

Conclusions: This study highlights that landscape genetics models provide superior estimation of functional dispersal than habitat surrogates and suggests that optimization of genetic distance should be included as an optimization routine in landscape genetics, along with variables, scales, effect size and functional response shape. Furthermore, our study provides new insights on the ecological conditions that promote gene flow in snow leopards, which expands ecological knowledge, and we hope will improve conservation planning.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1720
Permanent link to this record
 

 
Author Hacker, C., Atzeni, L., Munkhtsog, B., Munkhtsog, B., Galsandorj, N., Zhang, Y., Liu, Y., Buyanaa, C., Bayandonoi, G., Ochirjav, M., Farrington, J. D., Jevit, M., Zhang, Y., Wu, L. Cong, W., Li, D., Gavette, C., Jackson, R., Janecka, J. E.
Title Genetic diversity and spatial structures of snow leopards (Panthera uncia) reveal proxies of connectivity across Mongolia and northwestern China Type Journal Article
Year 2022 Publication Landscape Ecology Abbreviated Journal
Volume Issue Pages 1-19
Keywords Admixture · Central Asia · Connectivity · Habitat Modeling · Landscape Genetics · Noninvasive Genetics · MEM · Spatial Structures
Abstract Understanding landscape connectivity and population genetic parameters is imperative for threatened species management. However, such information is lacking for the snow leopard (Panthera uncia). This study sought to explore hierarchical snow leopard gene flow patterns and drivers of genetic structure in Mongolia and China. A total of 97 individuals from across Mongolia and from the north-eastern edge of the Qinghai-Tibetan Plateau in Gansu Province to the middle of Qinghai Province in China were genotyped across 24 microsatellite loci. Distance-based frameworks were used to determine a landscape scenario best explaining observed genetic structure. Spatial and non-spatial methods were used to investigate fine-scale autocorrelation and similarity patterns as well as genetic structure and admixture. A genetic macro-division between populations in China and Mongolia was observed, suggesting that the Gobi Desert is a substantial barrier to gene flow. However, admixture and support for a resistance-based mode of isolation suggests connective routes that could facilitate movement. Populations in Mongolia had greater connectivity, indicative of more continuous habitat. Drivers of genetic structure in China were difficult to discern, and fine-scale sampling is needed. This study elucidates snow leopard landscape connectivity and helps to prioritize conservation areas. Although contact zones may have existed and occasional crossings can occur, establishing corridors to connect these areas should not be a priority. Focus should be placed on maintaining the relatively high connectivity for snow leopard populations within Mongolia and increasing research efforts in China.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1717
Permanent link to this record
 

 
Author Kachel, S., Bayrakcismith, R., Kubanychbekov, Z., Kulenbekov, R., McCarthy, T., Weckworth, B., Wirsing, A.
Title Ungulate spatiotemporal responses to contrasting predation risk from wolves and snow leopards Type Journal Article
Year 2022 Publication Journal of Animal Ecology Abbreviated Journal
Volume Issue Pages 1-16
Keywords landscape of fear, multiple-predator effects, non-consumptive effects, predation-risk effects, predator facilitation, risk allocation, snow leopard, wolf
Abstract 1. Spatial responses to risk from multiple predators can precipitate emergent consequences for prey (i.e. multiple-predator effects, MPEs) and mediate indirect interactions between predators. How prey navigate risk from multiple predators may therefore have important ramifications for understanding the propagation of predation-risk effects (PREs) through ecosystems.

2. The interaction of predator and prey traits has emerged as a potentially key driver of antipredator behaviour but remains underexplored in large vertebrate systems, particularly where sympatric prey share multiple predators. We sought to better generalize our understanding of how predators influence their ecosystems by considering how multiple sources of contingency drive prey distribution in a multi-predator–multi-prey system.

3. Specifically, we explored how two sympatric ungulates with different escape tactics—vertically agile, scrambling ibex Capra sibirica and sprinting argali Ovis ammon—responded to predation risk from shared predators with contrasting hunting modes—cursorial wolves Canis lupus and vertical-ambushing, stalking snow leopards Panthera uncia.

4. Contrasting risk posed by the two predators presented prey with clear trade-offs. Ibex selected for greater exposure to chronic long-term risk from snow leopards, and argali for wolves, in a nearly symmetrical manner that was predictable based on the compatibility of their respective traits. Yet, acute short-term risk from the same predator upended these long-term strategies, increasing each ungulates' exposure to risk from the alternate predator in a manner consistent with a scenario in which conflicting antipredator behaviours precipitate risk-enhancing MPEs and mediate predator facilitation. By contrast, reactive responses to wolves led ibex to reduce their exposure to risk from both predators—a risk-reducing MPE. Evidence of a similar reactive risk-reducing effect for argali vis-à-vis snow leopards was lacking.

5. Our results suggest that prey spatial responses and any resulting MPEs and prey-mediated interactions between predators are contingent on the interplay of hunting mode and escape tactics. Further investigation of interactions among various drivers of contingency in PREs will contribute to a more comprehensive understanding and improved forecasting of the ecological effects of predators.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1704
Permanent link to this record
 

 
Author Changxi, X., Bai, D., Lambert, J. P., Li, Y., Cering, L., Gong, Z., Riordan, P., Shi, K.
Title How Snow Leopards Share the Same Landscape with Tibetan Agro-pastoral Communities in the Chinese Himalayas Type Journal Article
Year 2022 Publication Journal of Resources and Ecology Abbreviated Journal
Volume 13 Issue 3 Pages 483-500
Keywords habitat use; landscape ecology; occupancy model; Qomolangma; Panthera uncia
Abstract The snow leopard (Panthera uncia) inhabits a human-altered alpine landscape and is often tolerated by residents in regions where the dominant religion is Tibetan Buddhism, including in Qomolangma NNR on the northern side of the Chinese Himalayas. Despite these positive attitudes, many decades of rapid economic development and population growth can cause increasing disturbance to the snow leopards, altering their habitat use patterns and ultimately impacting their conservation. We adopted a dynamic landscape ecology perspective and used multi-scale technique and occupancy model to better understand snow leopard habitat use and coexistence with humans in an 825 km2 communal landscape. We ranked eight hypothetical models containing potential natural and anthropogenic drivers of habitat use and compared them between summer and winter seasons within a year. HABITAT was the optimal model in winter, whereas ANTHROPOGENIC INFLUENCE was the top ranking in summer (AICcw≤2). Overall, model performance was better in the winter than in the summer, suggesting that perhaps some latent summer covariates were not measured. Among the individual variables, terrain ruggedness strongly affected snow leopard habitat use in the winter, but not in the summer. Univariate modeling suggested snow leopards prefer to use rugged land in winter with a broad scale (4000 m focal radius) but with a lesser scale in summer (30 m); Snow leopards preferred habitat with a slope of 22° at a scale of 1000 m throughout both seasons, which is possibly correlated with prey occurrence. Furthermore, all covariates mentioned above showed inextricable ties with human activities (presence of settlements and grazing intensity). Our findings show that multiple sources of anthropogenic activity have complex connections with snow leopard habitat use, even under low human density when anthropogenic activities are sparsely distributed across a vast landscape. This study is also valuable for habitat use research in the future, especially regarding covariate selection for finite sample sizes in inaccessible terrain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1698
Permanent link to this record
 

 
Author Xiao, C., Bai, D., Lambert, J. P., Li, Y., Cering, L., Gong, Z., Riordan, P., Shi, K.
Title How Snow Leopards Share the Same Landscape with Tibetan Agro-pastoral Communities in the Chinese Himalayas Type Journal Article
Year 2022 Publication Journal of Resources and Ecology Abbreviated Journal
Volume 13 Issue 3 Pages 483-500
Keywords habitat use; landscape ecology; occupancy model; Qomolangma; Panthera uncia
Abstract The snow leopard (Panthera uncia) inhabits a human-altered alpine landscape and is often tolerated by residents in regions where the dominant religion is Tibetan Buddhism, including in Qomolangma NNR on the northern side of the Chinese Himalayas. Despite these positive attitudes, many decades of rapid economic development and population growth can cause increasing disturbance to the snow leopards, altering their habitat use patterns and ultimately impacting their conservation. We adopted a dynamic landscape ecology perspective and used multi-scale technique and occupancy model to better understand snow leopard habitat use and coexistence with humans in an 825 km2 communal landscape. We ranked eight hypothetical models containing potential natural and anthropogenic drivers of habitat use and compared them between summer and winter seasons within a year. HABITAT was the optimal model in winter, whereas ANTHROPOGENIC INFLUENCE was the top ranking in summer (AICcw≤2). Overall, model performance was better in the winter than in the summer, suggesting that perhaps some latent summer covariates were not measured. Among the individual variables, terrain ruggedness strongly affected snow leopard habitat use in the winter, but not in the summer. Univariate modeling suggested snow leopards prefer to use rugged land in winter with a broad scale (4000 m focal radius) but with a lesser scale in summer (30 m); Snow leopards preferred habitat with a slope of 22° at a scale of 1000 m throughout both seasons, which is possibly correlated with prey occurrence. Furthermore, all covariates mentioned above showed inextricable ties with human activities (presence of settlements and grazing intensity). Our findings show that multiple sources of anthropogenic activity have complex connections with snow leopard habitat use, even under low human density when anthropogenic activities are sparsely distributed across a vast landscape. This study is also valuable for habitat use research in the future, especially regarding covariate selection for finite sample sizes in inaccessible terrain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1688
Permanent link to this record
 

 
Author Li, Y., Zhang, Y., Yadong, X., Zhang, Y., Zhang, Y., Gao, Y. Li, D.
Title Analysis of Conservation Gaps and Landscape Connectivity for Snow Leopard in Qilian Mountains of China Type Journal Article
Year 2022 Publication Sustainability Abbreviated Journal 1-13
Volume 14 Issue 1638 Pages
Keywords national park; protection gap; landscape connectivity; habitat suitability
Abstract Human modification and habitat fragmentation have a substantial influence on large carnivores, which need extensive, contiguous habitats to survive in a landscape. The establishment of protected areas is an effective way to offer protection for carnivore populations by buffering them from anthropogenic impacts. In this study, we used MaxEnt to model habitat suitability and to identify conservation gaps for snow leopard (Panthera uncia) in the Qilian Mountains of China, and then assessed the impact of highways/railways and their corridors on habitat connectivity using a graph-based landscape connectivity model. Our results indicated that the study area had 51,137 km2 of potentially suitable habitat for snow leopards and that there were four protection gaps outside of Qilian Mountain National Park. The findings revealed that the investigated highway and railway resulted in a decrease in connectivity at a regional scale, and that corridor development might enhance regional connectivity, which strengthens the capacity of central habitat patches to act as stepping stones and improve connections between western and eastern habitat patches. This study emphasized the need for assessing the impact of highways and railways, as well as their role in corridor development, on species’ connectivity. Based on our results, we provide some detailed recommendations for designing protection action plans for effectively protecting snow leopard habitat and increasing habitat connectivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1686
Permanent link to this record
 

 
Author Sultan, H., Rashid, W., Shi, J., Rahim, I. U., Nafees, M., Bohnett, E., Rashid, S., Khan, M. T., Shah, I. A., Han, H., Ariza-Montes, A.
Title Horizon Scan of Transboundary Concerns Impacting Snow Leopard Landscapes in Asia Type Journal Article
Year 2022 Publication MDPI Abbreviated Journal Land
Volume 11 Issue 248 Pages 1-22
Keywords collaboration; habitat; innovative solutions; integrated landscape approach; socio- ecological system; trade corridor; tourism
Abstract The high-altitude region of Asia is prone to natural resource degradation caused by a variety of natural and anthropogenic factors that also threaten the habitat of critical top predator species, the snow leopard (Panthera uncia). The snow leopard’s landscape encompasses parts of the twelve Asian countries and is dominated by pastoral societies within arid mountainous terrain. However, no investigation has assessed the vulnerability and pathways towards long-term sustainability on the global snow leopard landscape scale. Thus, the current study reviewed 123 peer-reviewed scientific publications on the existing knowledge, identified gaps, and proposed sustainable mitigation options for the longer term and on larger landscape levels in the range countries. The natural resource degradation in this region is caused by various social, economic, and ecological threats that negatively affect its biodiversity. The factors that make the snow leopard landscapes vulnerable include habitat fragmentation through border fencing, trade corridor infrastructure, non-uniform conservation policies, human–snow leopard conflict, the increasing human population, climatic change, land use and cover changes, and unsustainable tourism. Thus, conservation of the integrated Socio-Ecological System (SES) prevailing in this region requires a multi-pronged approach. This paper proposes solutions and identifies the pathways through which to implement these solutions. The prerequisite to implementing such solutions is the adoption of cross-border collaboration (regional cooperation), the creation of peace parks, readiness to integrate transnational and cross-sectoral conservation policies, a focus on improving livestock management practices, a preparedness to control human population growth, a readiness to mitigate climate change, initiating transboundary landscape-level habitat conservation, adopting environment-friendly trade corridors, and promoting sustainable tourism. Sustainable development in this region encompasses the political, social, economic, and ecological landscapes across the borders.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1671
Permanent link to this record