|   | 
Details
   web
Records
Author Maier, F.
Title Tracking the snow cat of Ice Mountain Type Journal Article
Year 1998 Publication Wildlife Conservation Abbreviated Journal
Volume 101 Issue 3 Pages 36
Keywords Eugene-Koshkarev; tracking; radio-collars; status; population; herder; trapping; predator; prey; hunting; Russia; herders; browse; Eugene; Koshkarev; radio; collar; collars; 1080
Abstract Snow leopard preservation efforts by Russian biologist Eugene Koshkarev are hampered by the lack of technology and the attitudes of the local population. Without access to radio-collars until recently, the biologists have had to use low-tech research methods such as field observation. The chabani, or semi-nomadic herders of Central Asia, fear the leopards as predators and set traps. Local governments also allow hunting
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down)
Notes Document Type: English Approved no
Call Number SLN @ rana @ 347 Serial 635
Permanent link to this record
 

 
Author Xu, A.; Jiang, Z.; Li, C.; Guo, J.; Da, S.; Cui, Q.; Yu, S.; Wu, G.
Title Status and conservation of the snow leopard Panthera uncia in the Gouli Region, Kunlun Mountains, China Type Miscellaneous
Year 2008 Publication Oryx Abbreviated Journal
Volume 42 Issue Pages 460-463
Keywords Camera trapping,China,human-wildlife conflict,Kunlun Mountains,Panthera uncia,snow leopard,trace.
Abstract The elusive snow leopard Panthera unica is a rare and little studied species in China. Over 1 March-15 May 2006 we conducted a survey for the snow leopard in the Gouli Region, East Burhanbuda Mountain, Kunlun Mountains, Qinghai Province, China, in an area of c. 300 km2 at altitudes of 4,000-4,700 m. We surveyed 29 linear transects with a total length of c. 440 km, and located a total of 72 traces (pug marks, scrapes and urine marks) of snow leopard along four of the transects. We obtained eight photographs of snow leopard from four of six camera traps. We also recorded 1,369 blue sheep, 156 Tibetan gazelles, 47 argali, 37 red deer and one male white-lipped deer. We evaluated human attitudes towards snow leopard by interviewing the heads of 27 of the 30 Tibetan households living in the study area. These local people did not consider that snow leopard is the main predator of their livestock, and thus there is little retaliatory killing. Prospects for the conservation of snow leopard in this area therefore appear to be good. We analysed the potential threats to the species and propose the establishment of a protected area for managing snow leopard and the fragile alpine ecosystem of this region. (c) 2008 Fauna & Flora International.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down)
Notes Approved no
Call Number SLN @ rana @ 900 Serial 1032
Permanent link to this record
 

 
Author Jackson, R.; Roe, J.; Wangchuk, R.; Hunter, D.
Title Camera-Trapping of Snow Leopards Type Journal Article
Year 2005 Publication Cat News Abbreviated Journal
Volume 42 Issue Spring Pages 19-21
Keywords camera trapping; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; felids; tigers; tiger; techniques; surveys; survey; information; factor; marking; behavior; Ahlborn; Jackson; habitat; status; range; census; India; Hemis; High; national; national park; National-park; park; Ladakh; leh
Abstract Solitary felids like tigers and snow leopards are notoriously difficult to enumerate, and indirect techniques like pugmark surveys often produce ambiguous information that is difficult to interpret because many factors influence marking behavior and frequency (Ahlborn & Jackson 1988). Considering the snow leopard's rugged habitat, it is not surprising then that information on its current status and occupied range is very limited. We adapted the camera-trapping techniques pioneered by Ullas Karanth and his associates for counting Bengal tigers to the census taking of snow leopards in the Rumbak watershed of the India's Hemis High Altitude National Park (HNP), located in Ladakh near Leh (76ø 50' to 77ø 45' East; 33ø 15' to 34ø 20'North).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down)
Notes Approved no
Call Number SLN @ rana @ 1017 Serial 475
Permanent link to this record
 

 
Author Jackson, R.; Roe, J.; Wangchuk, R.; Hunter, D.
Title Estimating Snow Leopard Population Abundance Using Photography and Capture-Recapture Techniques Type Miscellaneous
Year 2006 Publication Wildlife Society Bulletin Abbreviated Journal
Volume 34 Issue 3 Pages 772-781
Keywords abundance; camera trapping; capture rates; dentistry; identification; India; photography; snow leopard; Uncia uncia
Abstract Conservation and management of snow leopards (Uncia uncial) has largely relied on anecdotal evidence and presence-absence data due to their cryptic nature and the difficult terrain they inhabit. These methods generally lack the scientific rigor necessary to accurately estimate population size and monitor trends. We evaluated the use of photography in capture-mark-recapture (CMR) techniques for estimating snow leopard population abundance and density within Hemis National Park, Ladakh, India. We placed infrared camera traps along actively used travel paths, scent-sprayed rocks, and scrape sites within 16-30 kmý sampling grids in successive winters during January and March 2003-2004. We used head-on, oblique, and side-view camera configurations to obtain snow leopard photographs at varying body orientations. We calculated snow leopard abundance estimates using the program CAPTURE. We obtained a total of 66 and 49 snow leopard captures resulting in 8.91 and 5.63 individuals per 100 trap nights during 2003 and 2004, respectively. We identified snow leopards based on the distinct pelage patters located primarily on the forelimbs, flanks, and dorsal surface of the tail. Capture probabilities ranged from 0.33 to 0.67. Density estimates ranged from 8.49 (SE+0.22) individuals per 100 kmý in 2003 to 4.45 (SE+0.16) in 2004. We believe the density disparity between years is attributable to different trap density and placement rather than to an actual decline in population size. Our results suggest that photographic capture-mark-recapture sampling may be a useful tool for monitoring demographic patterns. However, we believe a larger sample size would be necessary for generating a statistically robust estimate of population density and abundance based on CMR models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down)
Notes Approved no
Call Number SLN @ rana @ 912 Serial 476
Permanent link to this record