toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, F.; Jiang, Z.; Zeng, Y.; McCarthy, T. url 
  Title Development of primers to characterize the mitochondrial control region of the snow leopard (Uncia uncia) Type Miscellaneous
  Year 2007 Publication Molecular Ecology Notes Abbreviated Journal  
  Volume 7 Issue Pages 1196-1198  
  Keywords control region,Felidae,mitochondrial DNA,snow leopard,species-specific primers; genetics; development; mitochondrial; control; region; snow; snow leopard; snow-leopard; leopard; uncia  
  Abstract The snow leopard (Uncia uncia) is a rare carnivore living above the snow line in central Asia. Using universal primers for the mitochondrial genome control region hypervariable

region 1 (HVR1), we isolated a 411-bp fragment of HVR1 and then designed specific primers

near each end of this sequence in the conserved regions. These primers were shown to yield

good polymerase chain reaction products and to be species specific. Of the 12 snow leopards

studied, there were 11 segregating sites and six haplotypes. An identification case of snow

leopard carcass (confiscated by the police) proved the primers to be a useful tool for forensic

diagnosis in field and population genetics studies.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down)  
  Notes Approved no  
  Call Number SLN @ rana @ 911 Serial 1073  
Permanent link to this record
 

 
Author Korablev, M. P., Poyarkov, A. D., Karnaukhov, A. S., Zvychaynaya, E. Y., Kuksin, A. N., Malykh, S. V., Istomov, S. V., Spitsyn, S. V., Aleksandrov, D. Y., Hernandez-Blanco, J. A., Munkhtsog, B., Munkhtogtokh, O., Putintsev, N. I., Vereshchagin, A. S., Becmurody, A., Afzunov, S., Rozhnov, V. V. url 
  Title Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. Type Journal Article
  Year 2021 Publication Conservation Genetics Abbreviated Journal  
  Volume Issue Pages  
  Keywords Snow leopard, Panthera uncia, Microsatellites, Heterozygosity, Population structure, Noninvasive survey, Scat, Subspecies  
  Abstract The snow leopard (Panthera uncia Schreber, 1776) population in Russia and Mongolia is situated at the northern edge of the range, where instability of ecological conditions and of prey availability may serve as prerequisites for demographic instability and, consequently, for reducing the genetic diversity. Moreover, this northern area of the species distribution is connected with the western and central parts by only a few small fragments of potential habitats in the Tian-Shan spurs in China and Kazakhstan. Given this structure of the range, the restriction of gene flow between the northern and other regions of snow leopard distribution can be expected. Under these conditions, data on population genetics would be extremely important for assessment of genetic diversity, population structure and gene flow both at regional and large-scale level. To investigate large-scale and fine-grain population structure and levels of genetic diversity we analyzed 108 snow leopards identified from noninvasively collected scat samples from Russia and Mongolia (the northern part of the range) as well as from Kyrgyzstan and Tajikistan (the western part of the range) using panel of eight polymorphic microsatellites. We found low to moderate levels of genetic diversity in the studied populations. Among local habitats, the highest heterozygosity and allelic richness were recorded in Kyrgyzstan (He = 0.66 ± 0.03, Ho = 0.70 ± 0.04, Ar = 3.17) whereas the lowest diversity was found in a periphery subpopulation in Buryatia Republic of Russia (He = 0.41 ± 0.12, Ho = 0.29 ± 0.05, Ar = 2.33). In general, snow leopards from the western range exhibit greater genetic diversity (He = 0.68 ± 0.04, Ho = 0.66 ± 0.03, Ar = 4.95) compared to those from the northern range (He = 0.60 ± 0.06, Ho = 0.49 ± 0.02, Ar = 4.45). In addition, we have identified signs of fragmentation in the northern habitat, which have led to significant genetic divergence between subpopulations in Russia. Multiple analyses of genetic structure support considerable genetic differentiation between the northern and western range parts, which may testify to subspecies subdivision of snow leopards from these regions. The observed patterns of genetic structure are evidence for delineation of several management units within the studied populations, requiring individual approaches for conservation initiatives, particularly related to translocation events. The causes for the revealed patterns of genetic structure and levels of genetic diversity are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down)  
  Notes Approved no  
  Call Number Serial 1633  
Permanent link to this record
 

 
Author Atzeni, L., Cushman, S. A., Bai, D., Wang, J., Chen, P., Shi, K., Riordan, P. url 
  Title Meta-replication, sampling bias, and multi-scale model selection: A case study on snow leopard (Panthera uncia) in western China. Type Journal Article
  Year 2020 Publication Ecology and Evolution Abbreviated Journal  
  Volume Issue Pages 1-27  
  Keywords MaxEnt, meta-replication, multi-scale, Panthera uncia, sampling bias, scale selection, snow leopard, species distribution model  
  Abstract Replicated multiple scale species distribution models (SDMs)

have become increasingly important to identify the correct variables

determining species distribution and their influences on ecological

responses. This study explores multi-scale habitat relationships of the

snow leopard (Panthera uncia) in two study areas on the Qinghai–Tibetan

Plateau of western China. Our primary objectives were to evaluate the

degree to which snow leopard habitat relationships, expressed by

predictors, scales of response, and magnitude of effects, were

consistent across study areas or locally landcape-specific. We coupled

univariate scale optimization and the maximum entropy algorithm to

produce multivariate SDMs, inferring the relative suitability for the

species by ensembling top performing models. We optimized the SDMs based

on average omission rate across the top models and ensembles’ overlap

with a simulated reference model. Comparison of SDMs in the two study

areas highlighted landscape-specific responses to limiting factors.

These were dependent on the effects of the hydrological network,

anthropogenic features, topographic complexity, and the heterogeneity of

the landcover patch mosaic. Overall, even accounting for specific local

differences, we found general landscape attributes associated with snow

leopard ecological requirements, consisting of a positive association

with uplands and ridges, aggregated low-contrast landscapes, and large

extents of grassy and herbaceous vegetation. As a means to evaluate the

performance of two bias correction methods, we explored their effects on

three datasets showing a range of bias intensities. The performance of

corrections depends on the bias intensity; however, density kernels

offered a reliable correction strategy under all circumstances. This

study reveals the multi-scale response of snow leopards to environmental

attributes and confirms the role of meta-replicated study designs for

the identification of spatially varying limiting factors. Furthermore,

this study makes important contributions to the ongoing discussion about

the best approaches for sampling bias correction.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down)  
  Notes Approved no  
  Call Number Serial 1616  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: