toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Robinson, J. J., Crichlow, A. D., Hacker, C. E., Munkhtsog, B., Munkhtsog, B., Zhang, Y., Swanson, W. F., Lyons, L. A., Janecka, J. E. pdf 
  Title Genetic Variation in the Pallas’s Cat (Otocolobus manul) in Zoo-Managed and Wild Populations Type Journal Article
  Year 2024 Publication Diversity Abbreviated Journal  
  Volume 16 Issue 228 Pages 1-13  
  Keywords Otocolobus manul; microsatellites; zoo-managed population; mitochondrial 12S ribosomal RNA; endothelial PAS domain protein 1  
  Abstract The Pallas’s cat (Otocolobus manul) is one of the most understudied taxa in the Felidae family. The species is currently assessed as being of “Least Concern” in the IUCN Red List, but this assessment is based on incomplete data. Additional ecological and genetic information is necessary for the long-term in situ and ex situ conservation of this species. We identified 29 microsatellite loci with sufficient diversity to enable studies into the individual identification, population structure, and phylogeography of Pallas’s cats. These microsatellites were genotyped on six wild Pallas’s cats from the Tibet Autonomous Region and Mongolia and ten cats from a United States zoo-managed population that originated in Russia and Mongolia. Additionally, we examined diversity in a 91 bp segment of the mitochondrial 12S ribosomal RNA (MT-RNR1) locus and a hypoxia-related gene, endothelial PAS domain protein 1 (EPAS1). Based on the microsatellite and MT-RNR1 loci, we established that the Pallas’s cat displays moderate genetic diversity. Intriguingly, we found that the Pallas’s cats had one unique nonsynonymous substitution in EPAS1 not present in snow leopards (Panthera uncia) or domestic cats (Felis catus). The analysis of the zoo-managed population indicated reduced genetic diversity compared to wild individuals. The genetic information from this study is a valuable resource for future research into and the conservation of the Pallas’s cat.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) SLN @ rakhee @ Serial 1749  
Permanent link to this record
 

 
Author Sanyal, O., Bashir, T., Rana, M., Chandan, P. pdf 
  Title First photographic record of the snow leopard Panthera uncia in Kishtwar High Altitude National Park, Jammu and Kashmir, India Type Journal Article
  Year 2023 Publication Oryx Abbreviated Journal  
  Volume Issue Pages 1-5  
  Keywords Camera trapping, India, Kashmir Himalaya, Kishtwar, Panthera uncia, photographic record, snow leopard  
  Abstract The snow leopard Panthera uncia is categorized as Vulnerable on the IUCN Red List. It is the least well-known of the large felids because of its shy and elusive nature and the inaccessible terrain it inhabits across the mountains of Central and South Asia. We report the first photographic record of the snow leopard in Kishtwar High Altitude National Park, India. During our camera-trapping surveys, conducted using a grid-based design, we obtained eight photographs of snow leopards, the first at 3,280 m altitude on 19 September 2022 and subsequent photographs over 3,004-3,878 m altitude. We identified at least four different individuals, establishing the species’ occurrence in Kiyar, Nanth and Renai catchments, with a capture rate of 0.123 ± SE 0.072 captures/100 trap-nights. ghts. We also recorded the presence of snow leopard prey species, including the Siberian ibex Capra sibirica, Himalayan musk deer Moschus leucogaster, long-tailed marmot Marmota caudata and pika Ochotona sp., identifying the area as potential snow leopard habitat. Given the location of Kishtwar High Altitude National Park, this record is significant for the overall snow leopard conservation landscape in India. We recommend a comprehensive study across the Kishtwar landscape to assess the occupancy, abundance, demography and movement patterns of the snow leopard and its prey. In addition, interactions between the snow leopard and pastoral communities should be assessed to understand the challenges facing the conservation and management of this important high-altitude region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) SLN @ rakhee @ Serial 1750  
Permanent link to this record
 

 
Author Nawaz, M. A., Khan, B. U., Mahmood, A., Younas, M., Din, J. U, Sutherland, C. pdf 
  Title An empirical demonstration of the effect of study design on density estimations Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal  
  Volume 11 Issue 13104 Pages 1-9  
  Keywords  
  Abstract The simultaneous development of technology (e.g. camera traps) and statistical methods, particularly spatially capture–recapture (SCR), has improved monitoring of large mammals in recent years. SCR estimates are known to be sensitive to sampling design, yet existing recommendations about trap spacing and coverage are often not achieved, particularly for sampling wide-ranging and rare species in landscapes that allow for limited accessibility. Consequently, most camera trap studies on large wide-ranging carnivores relies on convenience or judgmental sampling, and often yields compromised results. This study attempts to highlight the importance of carefully considered sampling design for large carnivores that, because of low densities and elusive behavior, are challenging to monitor. As a motivating example, we use two years of snow leopard camera trapping data from the same areas in the high mountains of Pakistan but with vastly different camera configurations, to demonstrate that estimates of density and space use are indeed sensitive to the trapping array. A compact design, one in which cameras were placed much closer together than generally recommended and therefore have lower spatial coverage, resulted in fewer individuals observed, but more recaptures, and estimates of density and space use were inconsistent with expectations for the region. In contrast, a diffuse design, one with larger spacing and spatial coverage and more consistent with general recommendations, detected more individuals, had fewer recaptures, but generated estimates of density and space use that were in line with expectations. Researchers often opt for compact camera configurations while monitoring wide-ranging and rare species, in an attempt to maximize the encounter probabilities. We empirically demonstrate the potential for biases when sampling a small area approximately the size of a single home range—this arises from exposing fewer individuals than deemed sufficient for estimation. The smaller trapping array may also underestimate density by significantly inflating  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) SLT @ jeffb @ Serial 1652  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: